Unified theory of linear instability of anisotropic surfaces and interfaces under capillary, electrostatic, and elastostatic forces: The regrowth of epitaxial amorphous silicon

Ogurtani, Tarik Omer
The first-order unified linear instability analysis (LISA) of the governing equation for the evolution of surfaces and interfaces under capillary, electromigration (EM), and elastostatic forces is developed. A formal treatment of the thermomigration (Soret effect) driven by the nonuniform temperature distribution caused by exothermic phase transformation (growth) at the surface and interfacial layers is presented and its apparent influence on the capillary force in connection with the stability is also established in a concise analytical form. This unified approach, which relies on a rigorous theory of irreversible thermodynamics of surfaces and interfaces, seriously considers the anisotropies associated with the generalized growth mobility, the interfacial specific Gibbs free energy (i.e., the surface stiffness), and the surface diffusivity in thin solid films. The singularity in the surface stiffness at the cusp regions of the Wulff construction of the surface Gibbs free energy is fully elaborated by using a modified cycloid-curtate function as a basis for generating the Dirac delta distribution, which shows an unusually strong anomalous effect on the surface morphological instability even in the absence of EM forces, as illustrated clearly by the graphical representation of the EM-induced instability threshold level as a function of tilt angle and wave number, in a three-dimensional plot for various intrinsic and normalized system parameters. In the development of LISA theory special attention is paid to the origin of the elastostatic forces, which include not only the elastic strain energy density, but also the elastic dipole tensor interaction between mobile atomic species and the applied stress field. The profound influence of the anomalous surface stiffness anisotropy on the surface morphological evolution under the applied stress system is demonstrated by three-dimensional computer graphics applied for copper and silicon thin single-crystal solid films having, respectively, sixfold {111}- and fourfold {100}-symmetric singular (vicinal) planes as the top surfaces, which reveal the fine features of the theory and give insight into some controversial issues related to LISA in the literature. This unified approach also considers the stress dependence of the generalized growth mobility and its profound influence on the stability of the interface displacement and roughening in thin solid films. As a special application of the theory, the effects of uniaxial and biaxial applied stresses on the recrystallization and the interfacial morphological evolution of amorphous Si deposited on silicon substrates are thoroughly analyzed and excellent quantitative agreement is found with the published experimental data in the literature.


Molecular-dynamics simulations of surface and bulk properties of Zn, Cd, and ZnCd systems
Amirouche, L; Erkoç, Şakir (Wiley, 2004-02-01)
Surface and bulk properties of Zn, Cd, and ZnCd systems have been investigated by performing molecular-dynamics simulations using a recently developed empirical many-body potential energy function for these systems, which comprices two- and three-body atomic interactions. Surface reconstruction and multilayer relaxation on clean surfaces, adatom on surface, substitutional atom on surface and bulk materials, and vacancy on surface and bulk materials have been studied extensively. (C) 2004 WILEY-VCH Verlag Gm...
Theoretical investigation of intersubband nonlinear optical rectification in AlxlGa1-xlAs/GaAs/AlxrGa1-xrAs asymmetric rectangular quantum wells
Karabulut, Ibrahim; Atav, Uelfet; Safak, Haluk; Tomak, Mehmet (Wiley, 2007-09-01)
In this study, a theoretical investigation of intersubband nonlinear optical rectification in Alx1Ga1-x1As/ GaAs/AlxrGa1-xrAs asymmetric rectangular quantum wells is presented. The electronic states in the asymmetric rectangular quantum well are described within the framework of the envelope function approach including the effects of band nonparabolicity and the effective mass mismatch. The nonlinear optical rectification is calculated using the density matrix formalism. It is found that the nonlinear optic...
Critical behaviour of the polarization, tilt angle, electric susceptibility and the specific heat close to the SmA-ferroelectric SmC (SmC*) phase transitions
Yurtseven, Hasan Hamit; Kilit, E. (Informa UK Limited, 2006-01-01)
This study gives the temperature dependence of the two order parameters, namely, polarization P and the tilt angle theta, when there is a biquadratic coupling P-2 theta(2) in the expansion of the Landau free energy. This applies to the electric-field-induced SmA-Ferro-Electric SmC (SmC*) phase transition. From this expansion of the Landau free energy in terms of the polarization and the tilt angle, we obtain the temperature dependence of the electric susceptibility chi and the electric field dependence of t...
Investigation of effect of design and operating parameters on acoustophoretic particle separation via 3D device-level simulations
Sahin, Mehmet Akif; ÇETİN, BARBAROS; Özer, Mehmet Bülent (Springer Science and Business Media LLC, 2019-12-16)
In the present study, a 3D device-level numerical model is implemented via finite element method to assess the effects of design and operating parameters on the separation performance of a microscale acoustofluidic device. Elastodynamic equations together with electromechanical coupling at the piezoelectric actuators for the stress field within the solid parts, Helmholtz equation for the acoustic field within fluid, and Navier-Stokes equations for the fluid flow are coupled for the simulations. Once the zer...
OGURTANI, TO (Wiley, 1991-11-16)
The effects of the anharmonic interaction of the Coulombic kink chain on the strength and the position of the cold-work internal friction peaks associated with the nonlinearly power dissipating impurity atoms are investigated by a novel numerical simulation of the related discrete mathematical macro-model. The present macroscopic model of dislocation damping which relies heavily on the microscopic theory of kink-interstitial interactions shows very strong anomalous strain amplitude as well as the bias stres...
Citation Formats
T. O. Ogurtani, “Unified theory of linear instability of anisotropic surfaces and interfaces under capillary, electrostatic, and elastostatic forces: The regrowth of epitaxial amorphous silicon,” PHYSICAL REVIEW B, pp. 0–0, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63396.