Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Recovery of Turkish Oil Shales by Electromagnetic Heating and Determination of the Dielectric Properties of Oil Shales by an Analytical Method
Date
2010-01-01
Author
Hascakir, Berna
Akın, Serhat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
201
views
0
downloads
Cite This
The effect of microwave irradiation on the recovery of three different oil shale samples was studied. To enhance the microwave efficiency, three different iron powders (Fe, Fe2O3, and FeCl3) and their three different doses (0.1, 0.5, and 1% by weight, each) were added to the samples as microwave receptors. The doses of each receptor were optimized for each oil shale sample based on the highest oil or gas production value obtained experimentally. During the experimental studies, the temperature distribution and the emissions of CO, H2S, CH4, and O-2 gases were recorded. Temperature distributions obtained experimentally,were modeled analytically to find the microwave power absorption coefficient of each Oil shale sample. Experimental and analytical studies show that, oil recovery From oil Shales is not Only related to reaching the pyrolysis temperature, but also to the amount of time that temperature is maintained. Therefore, for the efficient recovery of oil shales, the best solution is found in a hybrid utilization of irradiation and conventional heat transfer: microwave heating for a rapid temperature rise and conventional heating for sustaining high temperatures effectively.
Subject Keywords
Fuel Technology
,
Energy Engineering and Power Technology
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/37847
Journal
ENERGY & FUELS
DOI
https://doi.org/10.1021/ef900868w
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Experimental and Numerical Simulation of Oil Recovery from Oil Shales by Electrical Heating
Hascakir, Bema; Babadagli, Tayfun; Akın, Serhat (American Chemical Society (ACS), 2008-11-01)
The recovery characteristics of four different oil shale samples were tested experimentally using the retort technique. To accomplish efficient temperature distribution, the thermal conductivity of the oil shale samples was increased by the addition of three different iron powders. The doses of iron powders were optimized for each oil shale sample based on the highest oil production value experimentally. The experiments were then modeled using the electrical heating option of a commercial reservoir simulato...
Performance prediction of in situ combustion processes
Kök, Mustafa Verşan (Informa UK Limited, 2001-01-01)
In this research, in situ combustion performance calculations were performed using different algorithms, which were based on oil recovery/volume burned correlative methods. The correlations were based on field and laboratory combustion tube results. A computer method was developed and applied to different heavy crude oil fields. The results showed that an in situ combustion process is applicable in these fields if the volume burned is 30% for field 1 and 40% for field 2.
Combustion kinetics of crude oils
Kök, Mustafa Verşan (Informa UK Limited, 2002-01-01)
In this research, the reaction rates related to an in-situ combustion process were investigated and the effect of heating rate and crude oil type on the reaction rates were investigated. A laboratory model was used to run reaction kinetic experiments in unconsolidated limestone packs using three different crude oils. Experiments were performed under the same pressure and airflow rate and at two different heating rates. It was observed that oxidation of crude oil porous media follows a series of reactions. T...
Effect of pressure on combustion kinetics of heavy oils
Bağcı, Ali Suat (Informa UK Limited, 2005-07-01)
In this study, 16 experiments were conducted to study the effects of pressure on crude oil oxidation in limestone medium. Karakus (29 degrees API), Beykan (32 degrees API), Bati Raman (12 degrees API), Camurlu ( 12 degrees API), Adiyaman (26 degrees API), Garzan (28 degrees API) and Raman (18 degrees API) crude oil from Turkish oil fields were used. The mixture of limestone and the crude oil was subjected to a controlled heating schedule under a constant flow rate of air. The produced gas was analyzed for i...
3-d model studies of alkaline flooding using horizontal wells
Bağcı, Ali Suat (Informa UK Limited, 2004-07-02)
In this study, the effect of sodium hydroxide (NaOH) solution for the improved oil recovery of Garzan (26degreesAP1) crude oil was investigated using two different laboratory models. The effect of injection rate on oil recovery was investigated using a one-dimensional unconsolidated limestone reservoir model. The effect of horizontal and vertical well configurations on oil recovery was also studied using a 3-D physical model and various well configurations. As previously studied, the interfacial tension mea...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Hascakir and S. Akın, “Recovery of Turkish Oil Shales by Electromagnetic Heating and Determination of the Dielectric Properties of Oil Shales by an Analytical Method,”
ENERGY & FUELS
, pp. 503–509, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37847.