MoOx/Ag/MoOx multilayers as hole transport transparent conductive electrodes for n-type crystalline silicon solar cells

Akdemir, Ozan
Borra, Mona Zolfaghari
Nasser, Hisham
Turan, Raşit
Bek, Alpan
Substitution of highly doped layers with conventional transparent conductive electrodes as carrier collecting and selective contacts in conventional crystalline silicon (c-Si) solar cell configurations is crucial in increasing affordability of solar cells by lowering material costs. In this study, oxide/metal/oxide (OMO) multilayers featuring molybdenum oxide (MoOx) and silver (Ag) thin films are developed by thermal evaporation technique, as dopant-free hole transport transparent conductive electrodes (HTTCEs) for n-type c-Si solar cells. Semidopant-free asymmetric heterocontact (semi-DASH) solar cells on n-type c-Si utilizing OMO multilayers are fabricated. The effect of outer MoOx layer thickness and Ag deposition rate on the photovoltaic characteristics of the fabricated semi-DASH solar cells are investigated. A comparison of front side pyramid textured and flat surface solar cells is performed to optimize the optical and electrical properties. Highest efficiency of 9.3% +/- 0.2% is achieved in a pyramid textured semi-DASH c-Si solar cell with 15/10/30 nm of HTTCE structure.