Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Concentrated Solar Power Harvesting Using Self-powered, Wireless, Thin-profile, Lightweight Solar Tiles
Date
2011-08-01
Author
Ardanuc, Serhan M.
Lal, Amit
Jones, Samuel C.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
238
views
0
downloads
Cite This
This paper presents a modular and scalable approach to concentrated solar power (CSP) harvesting by using low-profile, light-weight, sun-tracking, millimeter-to-centimeter-scale mirror arrays that can be wirelessly controlled to reflect the incident solar energy to a central receiver. Conventional, utility-scale CSP plants use large-area heliostats, parabolic troughs, or dish collectors that are not only heavy and bulky, but also require significant labor for installation and maintenance infrastructure. Furthermore, form-factors of current heliostats are not compatible with low-profile roof-mountable systems, as seen by the dominance of the conventional Photovoltaic systems for roof-top installations. Solar TILE (STILE) technology to be presented in this work enables concentrated solar power harvesting on a given surface with form factor and weight per unit area comparable to those of ceramic tiles used on walls/floors or that of Photovoltaic modules. Self-powered operation by integrated solar cells, elimination of wiring for power transfer, wireless control, and weather-proof enclosure of moving parts help STILE technology promise lower installation and maintenance costs than PV approaches, while enabling novel beam-redirection applications over large surfaces. As the STILEs are made of mostly plastic, which costs at least an order of magnitude less than solar grade silicon, associated material costs could potentially be much cheaper than silicon PV cells. After a description of the STILE technology and a discussion of mirror scaling, we present a prototype tile with dimensions 33 x 33 x 6.4 cm(3) and detail its wireless operation. [DOI: 10.1115/1.4004244]
Subject Keywords
Renewable Energy, Sustainability and the Environment
,
Energy Engineering and Power Technology
URI
https://hdl.handle.net/11511/66942
Journal
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME
DOI
https://doi.org/10.1115/1.4004244
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Evaluation of hybridsolar-wind-hydrogenenergy system based on methanol electrolyzer
Budak, Yagmur; DEVRİM, YILSER (Wiley, 2020-10-01)
In this study, it is aimed to meet the annual electricity and heating needs of a house without interruption with the photovoltaic panel, wind turbine, methanol electrolyzer, and high temperature proton exchange membrane fuel cell system. The system results show that the use of the 2 WT with 18 PV was enough to provide the need of the methanol electrolyzer, which provides requirements of the high temperature proton exchange membrane fuel cell. The produced heat by the fuel cell was used to meet the heat requ...
Numerical analysis ofdopant-freeasymmetric silicon heterostructure solar cell withSiO(2)as passivation layer
Mehmood, Haris; Nasser, Hisham; Tauqeer, Tauseef; Turan, Raşit (Wiley, 2020-08-01)
Conventional silicon heterojunction solar cells employ defects-prone a-Si:H layers for junction formation and passivation purposes. Substituting these layers with hole-selective MoO(x)and electron-selective TiO(x)can reduce parasitic absorption and energy band offsets issues associated with doped silicon films. In this work, dopant-free asymmetric heterostructure Si solar cells are studied with and without SiO(2)passivation layer, and their performance has been compared. The inclusion of ultrathin SiO(2)ins...
MoOx/Ag/MoOx multilayers as hole transport transparent conductive electrodes for n-type crystalline silicon solar cells
Akdemir, Ozan; Borra, Mona Zolfaghari; Nasser, Hisham; Turan, Raşit; Bek, Alpan (Wiley, 2020-03-25)
Substitution of highly doped layers with conventional transparent conductive electrodes as carrier collecting and selective contacts in conventional crystalline silicon (c-Si) solar cell configurations is crucial in increasing affordability of solar cells by lowering material costs. In this study, oxide/metal/oxide (OMO) multilayers featuring molybdenum oxide (MoOx) and silver (Ag) thin films are developed by thermal evaporation technique, as dopant-free hole transport transparent conductive electrodes (HTT...
ELECTRIC DRIVE FOR FLYWHEEL ENERGY-STORAGE
TRIPATHY, SC (Elsevier BV, 1994-02-01)
This paper presents the results of experimental work on flywheel energy storage systems for city buses. An efficient electronic hardware scheme is used to start the flywheel and traction machines. This scheme has been designed, fabricated and tested in our laboratory. A low frequency a.c. has been derived from an inverter fed from a three-phase uncontrolled rectifier to start the commutatorless d.c. motors. Commutation is achieved by using a capacitor and two auxiliary thyristors, whose ratings could be a f...
An investigation of optimum PV and wind energy system capacities for alternate short and long-term energy storage sizing methodologies
Al-Ghussain, Loiy; Taylan, Onur; Baker, Derek Keıth (Wiley, 2019-01-01)
The goal of this study is to find the optimal sizes of renewable energy systems (RES) based on photovoltaic (PV) and/or wind systems for three energy storage system (ESS) scenarios in a micro-grid; (1) with pumped hydro storage (PHS) as a long-term ESS, (2) with batteries as a short-term ESS, and (3) without ESS. The PV and wind sizes are optimally determined to accomplish the maximum annual RES fraction (F-RES) with electricity cost lower than or equal to the utility tariff. Furthermore, the effect of the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. M. Ardanuc, A. Lal, and S. C. Jones, “Concentrated Solar Power Harvesting Using Self-powered, Wireless, Thin-profile, Lightweight Solar Tiles,”
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME
, pp. 0–0, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66942.