Automorphisms of the Hatcher-Thurston complex

Irmak, Elmas
Korkmaz, Mustafa
Let S be a compact, connected, orientable surface of positive genus. Let HT(S) be the Hatcher-Thurston complex of S. We prove that Ant HT(S) is isomorphic to the extended mapping class group of S modulo its center.


On the moduli spaces of fiber bundles of curves of genus >= 2
Onsiper, H (Springer Science and Business Media LLC, 2000-11-02)
We determine the moduli spaces parametrizing analytic fiber bundles of curves of genus g greater than or equal to 2 over curves of genus g(b) > (g + 1)/2.
Minimal number of singular fibers in a Lefschetz fibration
Korkmaz, Mustafa (American Mathematical Society (AMS), 2001-01-01)
There exists a (relatively minimal) genus g Lefschetz fibration with only one singular fiber over a closed (Riemann) surface of genus h iff g greater than or equal to 3 and h greater than or equal to 2. The singular fiber can be chosen to be reducible or irreducible. Other results are that every Dehn twist on a closed surface of genus at least three is a product of two commutators and no Dehn twist on any closed surface is equal to a single commutator.
Kondo, Satoshi; Yasuda, Seidai (Mathematical Sciences Publishers, 2020-02-01)
Let A be the coordinate ring of a projective smooth curve over a finite field minus a closed point. For a nontrivial ideal I subset of A, Drinfeld defined the notion of structure of level I on a Drinfeld module.
On the moduli of surfaces admitting genus 2 fibrations
Onsiper, H; Tekinel, C (Springer Science and Business Media LLC, 2002-12-01)
We investigate the structure of the components of the moduli space Of Surfaces of general type, which parametrize surfaces admitting nonsmooth genus 2 fibrations of nonalbanese type, over curves of genus g(b) greater than or equal to 2.
Relative topology of real algebraic varieties in their complexifications
Ozan, Yıldıray (Mathematical Sciences Publishers, 2004-12-01)
We investigate, for a given smooth closed manifold M, the existence of an algebraic model X for M (i.e., a nonsingular real algebraic variety diffeomorphic to M) such that some nonsingular projective complexification i:X-->X-C of X admits a retraction r:X-C-->X. If such an X exists, we show that M must be formal in the sense of Sullivan's minimal models, and that all rational Massey products on M are trivial.
Citation Formats
E. Irmak and M. Korkmaz, “Automorphisms of the Hatcher-Thurston complex,” ISRAEL JOURNAL OF MATHEMATICS, pp. 183–196, 2007, Accessed: 00, 2020. [Online]. Available: