3-D crustal structure along the North Anatolian Fault Zone in north-central Anatolia revealed by local earthquake tomography

Download
2012-03-01
Yolsal Çevikbilen, Seda
Biryol, C. Berk
Beck, Susan
Zandt, George
Taymaz, Tuncay
Adiyaman, Hande E.
Özacar, Atilla Arda
3-D P-wave velocity structure and Vp/Vs variations in the crust along the North Anatolian Fault Zone (NAFZ) in north-central Anatolia were investigated by the inversion of local P- and S-wave traveltimes, to gain a better understanding of the seismological characteristics of the region. The 3-D local earthquake tomography inversions included 5444 P- and 3200 S-wave readings obtained from 168 well-located earthquakes between 2006 January and 2008 May. Dense ray coverage yields good resolution, particularly in the central part of the study area. The 3-D Vp and Vp/Vs tomographic images reveal clear correlations with both the surface geology and significant tectonic units in the region. We observed the lower limit of the seismogenic zone for north-central Anatolia at 15 km depth. Final earthquake locations display a distributed pattern throughout the study area, with most of the earthquakes occurring on the major splays of the NAFZ, rather than its master strand. We identify three major high-velocity blocks in the mid-crust separated by the Izmir-Ankara-Erzincan Suture and interpret these blocks to be continental basement fragments that were accreted onto the margin following the closure of Neo-Tethyan Ocean. These basement blocks may have in part influenced the rupture propagations of the historical 1939, 1942 and 1943 earthquakes. In addition, large variations in the Vp/Vs ratio in the mid-crust were observed and have been correlated with the varying fluid contents of the existing lithologies and related tectonic structures.
GEOPHYSICAL JOURNAL INTERNATIONAL

Suggestions

3-D Crustal Structure along the North Anatolian Fault Zone in North Central Anatolia from local earthquake tomography
Yolsal-Çevikbilen, Seda ; Biryol, C. Berk; Beck, Susan L.; Zandt, George; Taymaz, Tuncay ; Adiyaman, Hande E.; Özacar, Atilla Arda (2011-04-03)
The North Anatolian Fault is a seismically active dextral strike-slip fault zone extending for about 1500 km from Karliova in eastern Turkey to the Gulf of Saros in the Aegean Sea. Three-dimensional P-wave velocity structure and Vp/Vs variation in the crust along the North Anatolian Fault Zone in north central Anatolia was investigated by the inversion of local P- and S-wave travel times in order to gain a better understanding of the seismological characteristics of the region. We used the damped least-squa...
Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography
Biryol, C. Berk; Beck, Susan L.; Zandt, George; Özacar, Atilla Arda (2011-03-01)
P>Lithospheric deformation throughout Anatolia, a part of the Alpine-Himalayan orogenic belt, is controlled mainly by collision-related tectonic escape of the Anatolian Plate and subduction roll-back along the Aegean Subduction Zone. We study the deeper lithosphere and mantle structure of Anatolia using teleseismic, finite-frequency, P-wave traveltime tomography. We use data from several temporary and permanent seismic networks deployed in the region. Approximately 34 000 P-wave relative traveltime residual...
A new set of overprinting slip-data along Manisa Fault in Aegean Extensional Province, Western Anatolia
Tekin, Taner; Sançar, Taylan; Rojay, Fuat Bora (2022-05-23)
Interplay between the dynamic effects of the northward subduction of the African plate beneath the Aegean continental fragment and the North Anatolian dextral strike slip fault to the north caused a complex large-scale extensional crustal deformational domain, named Aegean extensional province.The Gediz-Alaşehir Graben (GAG), being in that large scale extensional terrain, is a NW-SE trending extensional basin developed to the north of K. Menderes Graben (KMG). NW-SE trending Manisa fault is one of the impor...
3-D basin geometry model to determine the site effects based on geophysical and geotechnical data: Case study at near-field and high seismicity area of Gölyaka, Düzce, Turkey.
Yousefibavil, Karim; Koçkar, Mustafa Kerem; Akgün, Haluk (2018-04-13)
The near-field and high seismicity of the area makes the determination of the bedrock geometry more complex and pioneers the studies of site response analysis in account for a seismic hazard assessment. Without a good model of basin structure, any powerful calculation method would lack a well-developed basin response. The study has been conducted in the Gölyaka basin that uniquely falls within the bifurcated near-field section of the North Anatolian Fault System. The surface rupture of the 1999 Earthquakes ...
Late Cretaceous extension and Palaeogene rotation-related contraction in Central Anatolia recorded in the Ayhan-Buyukkisla basin
Advokaat, Eldert L.; van Hinsbergen, Douwe J. J.; Kaymakcı, Nuretdin; Vissers, Reinoud L. M.; Hendriks, Bart W. H. (2014-11-18)
The configuration and evolution of subduction zones in the Eastern Mediterranean region in Cretaceous time accommodating Africa-Europe convergence remain poorly quantitatively reconstructed, owing to a lack of kinematic constraints. A recent palaeomagnetic study suggested that the triangular Central Anatolian Crystalline Complex (CACC) consists of three blocks that once formed an similar to N-S elongated continental body, underthrusted below ophiolites in Late Cretaceous time. After extensional exhumation a...
Citation Formats
S. Yolsal Çevikbilen et al., “3-D crustal structure along the North Anatolian Fault Zone in north-central Anatolia revealed by local earthquake tomography,” GEOPHYSICAL JOURNAL INTERNATIONAL, pp. 819–849, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38088.