MAGNETOHYDRODYNAMIC FLOW IN AN INFINITE CHANNEL

1986-09-01
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in an infinite channel, under an applied magnetic field has been investigated. The MHD flow between two parallel walls is of considerable practical importance because of the utility of induction flowmeters. The walls of the channel are taken perpendicular to the magnetic field and one of them is insulated, the other is partly insulated, partly conducting. An analytical solution has been developed for the velocity field and magnetic field by reducing the problem to the solution of a Fredholm integral equation of the second kind, which has been solved numerically. Solutions have been obtained for Hartmann numbers M up to 200. All the infinite integrals obtained are transformed to finite integrals which contain modified Bessel functions of the second kind. So, the difficulties associated with the computation of infinite integrals with oscillating integrands which arise for large M have been avoided. It is found that, as M increases, boundary layers are formed near the nonconducting boundaries and in the interface region for both velocity and magnetic fields, and a stagnant region in front of the conducting boundary is developed for the velocity field. Selected graphs are given showing these behaviours.
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Suggestions

MAGNETOHYDRODYNAMIC FLOW IN ELECTRODYNAMICALLY COUPLED RECTANGULAR DUCTS
Tezer, Münevver (Wiley, 1988-06-01)
In Sezgin1,2 the problems considered are the magnetohydrodynamic (MHD) flows in an electrodynamically conducting infinite channel and in a rectangular duct respectively, in the presence of an applied magnetic field. In the present paper we extend the solution procedure of these papers to two rectangular channels connected by a barrier which is partially conductor and partially insulator. The problem has been reduced to the solution of a pair of dual series equations and then to the solution of a Fredholm's ...
BOUNDARY-ELEMENT METHOD SOLUTION OF MHD FLOW IN A RECTANGULAR DUCT
Tezer, Münevver (Wiley, 1994-05-30)
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in a rectangular duct with an external magnetic field applied transverse to the flow has been investigated. The walls parallel to the applied magnetic field are conducting while the other two walls which are perpendicular to the field are insulators. The boundary element method (BEM) with constant elements has been used to cast the problem into the form of an integral equation over the boundary and to obtain a sy...
ELECTRICALLY DRIVEN FLOWS IN MHD WITH MIXED ELECTROMAGNETIC BOUNDARY-CONDITIONS
Tezer, Münevver; ARIEL, PD (Wiley, 1988-01-01)
Flow of viscous, incompressible, electrically conducting fluid, driven by imposed electric currents has been investigated in the presence of a transverse magnetic field. The boundary perpendicular to the magnetic field is perfectly conducting partly along its length. Three cases have been considered: a) flow in the upper half plane when the boundary to the right of origin is insulating and that to the left is perfectly conducting, b) flow in the upper half plane when a finite length of the boundary is perfe...
MAGNETOHYDRODYNAMIC FLOW ON A HALF-PLANE
Tezer, Münevver (Wiley, 1988-07-01)
We investigate the magnetohydrodynamic flow (MHD) on the upper, half of a non‐conducting plane for the case when the flow is driven by the current produced by an electrode placed in the middle of the plane. The applied magnetic field is perpendicular to the plane, the flow is laminar, uniform, steady and incompressible. An analytical solution has been developed for the velocity field and the induced magnetic field by reducing the problem to the solution of a Fredholm's integral equation of the second kind, ...
FEM solution of natural convection flow in square enclosures under magnetic field
Turk, O.; Tezer, Münevver (Emerald, 2013-01-01)
Purpose - The purpose of the paper is to obtain finite element method (FEM) solution of steady, laminar, natural convection flow in inclined enclosures in the presence of an oblique magnetic field. The momentum equations include the magnetic effect, and the induced magnetic field due to the motion of the electrically conducting fluid is neglected. Quadratic triangular elements are used to ensure accurate approximation for second order derivatives of stream function appearing in the vorticity equation.
Citation Formats
M. Tezer, “MAGNETOHYDRODYNAMIC FLOW IN AN INFINITE CHANNEL,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, pp. 593–609, 1986, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38094.