Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
MAGNETOHYDRODYNAMIC FLOW ON A HALF-PLANE
Date
1988-07-01
Author
Tezer, Münevver
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
173
views
0
downloads
Cite This
We investigate the magnetohydrodynamic flow (MHD) on the upper, half of a non‐conducting plane for the case when the flow is driven by the current produced by an electrode placed in the middle of the plane. The applied magnetic field is perpendicular to the plane, the flow is laminar, uniform, steady and incompressible. An analytical solution has been developed for the velocity field and the induced magnetic field by reducing the problem to the solution of a Fredholm's integral equation of the second kind, which has been solved numerically. Infinite integrals occurring in the kernel of the integral equation and in the velocity and magnetic field were approximated for large Hartmann numbers by using Bessel functions. As the Hartmann number M increases, boundary layers are formed near the non‐conducting boundaries and a parabolic boundary layer is developed in the interface region. Some graphs are given to show examples of this behaviour.
Subject Keywords
Mechanical Engineering
,
Mechanics of Materials
,
Applied Mathematics
,
Computational Mechanics
,
Computer Science Applications
URI
https://hdl.handle.net/11511/39261
Journal
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
DOI
https://doi.org/10.1002/fld.1650080702
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
MAGNETOHYDRODYNAMIC FLOW IN AN INFINITE CHANNEL
Tezer, Münevver (Wiley, 1986-09-01)
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in an infinite channel, under an applied magnetic field has been investigated. The MHD flow between two parallel walls is of considerable practical importance because of the utility of induction flowmeters. The walls of the channel are taken perpendicular to the magnetic field and one of them is insulated, the other is partly insulated, partly conducting. An analytical solution has been developed for the velocity...
MAGNETOHYDRODYNAMIC FLOW IN ELECTRODYNAMICALLY COUPLED RECTANGULAR DUCTS
Tezer, Münevver (Wiley, 1988-06-01)
In Sezgin1,2 the problems considered are the magnetohydrodynamic (MHD) flows in an electrodynamically conducting infinite channel and in a rectangular duct respectively, in the presence of an applied magnetic field. In the present paper we extend the solution procedure of these papers to two rectangular channels connected by a barrier which is partially conductor and partially insulator. The problem has been reduced to the solution of a pair of dual series equations and then to the solution of a Fredholm's ...
BOUNDARY-ELEMENT METHOD SOLUTION OF MHD FLOW IN A RECTANGULAR DUCT
Tezer, Münevver (Wiley, 1994-05-30)
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in a rectangular duct with an external magnetic field applied transverse to the flow has been investigated. The walls parallel to the applied magnetic field are conducting while the other two walls which are perpendicular to the field are insulators. The boundary element method (BEM) with constant elements has been used to cast the problem into the form of an integral equation over the boundary and to obtain a sy...
ELASTIC-PLASTIC DEFORMATION OF A CENTRALLY HEATED CYLINDER
ORCAN, Y; GAMER, U (Springer Science and Business Media LLC, 1991-01-01)
Subject of the investigation is the deformation of a perfectly plastic cylinder with uniform temperature inside its cylindrical core and zero surface temperature. The calculation is based on Tresca's yield condition and the flow rule associated to it. For small radii of the hot core. a plastic region appears at the center and expands towards the surface of the cylinder with increasing core temperature. The other possibility is that, depending on the core radius, two plastic regions form one after the other ...
ELECTRICALLY DRIVEN FLOWS IN MHD WITH MIXED ELECTROMAGNETIC BOUNDARY-CONDITIONS
Tezer, Münevver; ARIEL, PD (Wiley, 1988-01-01)
Flow of viscous, incompressible, electrically conducting fluid, driven by imposed electric currents has been investigated in the presence of a transverse magnetic field. The boundary perpendicular to the magnetic field is perfectly conducting partly along its length. Three cases have been considered: a) flow in the upper half plane when the boundary to the right of origin is insulating and that to the left is perfectly conducting, b) flow in the upper half plane when a finite length of the boundary is perfe...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Tezer, “MAGNETOHYDRODYNAMIC FLOW ON A HALF-PLANE,”
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
, pp. 743–758, 1988, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39261.