A methodology for lining design of circular mine shafts in different rock masses

2016-09-01
In this study, the finite element numerical modelling of 2D shaft sections in a Hoek-Brown medium are carried out in a non-hydrostatic stress state in an attempt to predict pressures developing around mine shafts. An iterative process of applying support pressure until observing no failure zone around the shaft is used to simulate the required lining support pressure for different shaft models. Later, regression analysis is carried out to find a generic shaft pressure equation representing the rock mass and the stress state. Finally, the developed pressure equation which shows a good agreement with a case study is used in elastic "thick-walled cylinder" equation to calculate the lining thickness required to prevent the development of a failure zone around the shaft. At the end of the study, a user-friendly object-oriented computer program "Shaft 2D" is developed to simplify the rigorous shaft lining thickness calculation process. (C) 2016 Published by Elsevier B.V. on behalf of China University of Mining & Technology.
INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY

Suggestions

A Methodology for lining and design of circular mine shafts in different rock masses
Güler, Erdoğan; Öztürk, Hasan; Department of Mining Engineering (2013)
The objective of this thesis is to predict lining thickness inside circular mine shafts. A numerical study with different rock mass strengths and different in-situ non-hydrostatic stresses are carried out in 2D shaft section models to predict pressures that develop on lining support. An iterative process of applying support pressure until observing no failure zone around shaft is used to simulate lining support pressure for each individual model. Later, regression and fuzzy logic analyses are carried out to...
A computational model for partially plastic stress analysis of orthotropic variable thickness disks subjected to external pressure
Eraslan, Ahmet Nedim; Yedekçi, Buşra (2014-04-01)
A computational model is developed to predict the states of stressand deformation in partially plastic, orthotropic, variable thickness, nonisothermal, stationary annular disks under external pressure. Assuming a state ofplane stress and using basic equations of mechanics of a disk, Maxwell relation,Hill’s quadratic yield condition, and a Swift type nonlinear hardening law, asingle governing differential equation describing the elastic and partially plasticresponse of an orthotropic, variable thickness, non...
Calculation of a phase diagram for the ice II-V-VItransitions
Tari, O; Yurtseven, Hasan Hamit; Salihoglu, S (2000-12-01)
In this study we calculate the P - T phase diagram of ice II - V - VI using a mean field model. Our calculated phase line equations are fitted to the experimental data from the literature. There is a very good agreement between our calculated and experimentally observed P - T phase diagram of ice II - V - VI.
An Algorithm for the forward step of adaptive regression slines via mapping approach
Kartal Koç, Elçin; Batmaz, İnci; İyigün, Cem; Department of Statistics (2012)
In high dimensional data modeling, Multivariate Adaptive Regression Splines (MARS) is a well-known nonparametric regression technique to approximate the nonlinear relationship between a response variable and the predictors with the help of splines. MARS uses piecewise linear basis functions which are separated from each other with breaking points (knots) for function estimation. The model estimating function is generated in two stepwise procedures: forward selection and backward elimination. In the first st...
Analysis of flexible pavements incorporating nonlinear resilient behavior of unbound granular layers
Karagöz, Cem; Acar, Soner Osman; Department of Civil Engineering (2004)
Traditionally, the resilient modulus values obtained from repeated unconfined or triaxial compression tests are used as the elastic modulus of granular layers in structural analysis of flexible pavements. Sometimes the resilient modulus of granular materials are estimated from known California bearing ratios (CBR) or stabilometer resistance (R) values by simple regression equations. On the other hand, it is well known that stress-strain relation for unbound granular materials is nonlinear and the resilient ...
Citation Formats
H. Öztürk, “A methodology for lining design of circular mine shafts in different rock masses,” INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, pp. 761–768, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38098.