Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Finding the optimum between volatility and cycle temperatures in solar thermochemical hydrogen production: Pb/PbO pair
Date
2019-07-12
Author
Calisan, Atalay
Ogulgonen, C. Guvenc
Kincal, Serkan
Üner, Deniz
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
A pilot unit for a concentrated solar thermal reactor with solar tracking was constructed. A 70 cm diameter concentrator dish could provide temperatures around 800 degrees C at a fairly steady rate. In the search for a redox pair that can work at such temperatures, studies were conducted on the feasibility of the Pb/PbO cycle for the splitting of H2O for H-2 production. Thermodynamics accounting for the vapor pressures of Pb and PbO indicated favorable water splitting until approximately 900 degrees C, at atmospheric steam pressures. After 1000 degrees C, the vapor pressure of PbO becomes greater than that of Pb, as a result, thermodynamic favorability in the gas phase begins to be suppressed. The thermodynamic estimations were tested experimentally both in lab scale, and in bench scale molten bed reactors. The process went through similar maxima in the hydrogen production rates. The field tests in solar concentrator using a Pb coated mullite system did not reveal much due to evaporative loss of Pb and PbO under high solar flux. In this paper, it was demonstrated that the relatively high vapor pressure of Pb and PbO can be exploited for designing efficient water splitting cycles at temperatures <1000 degrees C using a PbO vapor recovery and circulation system. (C) 2018 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
Subject Keywords
Fuel Technology
,
Renewable Energy, Sustainability and the Environment
,
Energy Engineering and Power Technology
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/38236
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2018.12.189
Collections
Department of Chemical Engineering, Article