Chemical and structural optimization of ZnCl2 activated carbons via high temperature CO2 treatment for EDLC applications

2018-10-04
Development of biomass based activated carbon materials for electrical double layer capacitor (EDLC) usage has gained attention as a result of requesting efficient and low cost energy storage device production. In this study, pine cone based activated carbons were produced with a combined chemical and physical activation route. ZnCl2 and CO2 were used for chemical and physical activation of the material, respectively. Activation parameters are adjusted to give different chemical and textural characteristics. FTIR and Raman spectroscopies were used for functional group identification and structural order characterization, respectively. As a result, efficient active materials for EDLC usage were obtained, with as high as 87 F/g specific capacitance in organic electrolytes. (C) 2018 Hydrogen Energy Publications LLC, Published by Elsevier Ltd. All rights reserved.
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Suggestions

Hydrogen generation from the hydrolysis of ammonia borane using cobalt-nickel-phosphorus (Co-Ni-P) catalyst supported on Pd-activated TiO2 by electroless deposition
Rakap, Murat; Kalu, Egwu Eric; Özkar, Saim (Elsevier BV, 2011-01-01)
Catalytically active, low-cost, and reusable transition metal catalysts are desired to develop on-demand hydrogen generation system for practical onboard applications. By using electroless deposition method, we have prepared the Pd-activated TiO2-supported Co-Ni-P ternary alloy catalyst (Co-Ni-P/Pd-TiO2) that can effectively promote the hydrogen release from ammonia-borane aqueous solution. Co-Ni-P/Pd-TiO2 catalysts are stable enough to be isolated as solid materials and characterized by XRD, SEM, and EDX. ...
Steam methane reforming over structured reactors under concentrated solar irradiation
Calisan, Atalay; Ogulgonen, C. Guvenc; Yilmaz, Arda; Üner, Deniz; Kincal, Serkan (Elsevier BV, 2019-07-12)
Intermittent nature of solar energy and solution strategies for steam methane reforming reaction powered by concentrated solar energy over Ni/mullite and Pd/CeO2/mullite catalysts were demonstrated. The solar concentration was achieved using a parabolic mirror with a 70 cm, delivering concentrated solar flux onto a focal area that is approximately 3 cm in diameter. The solar field tests conducted on monolithic catalyst support structures were compared with the laboratory scale measurements on powdered catal...
Hydrogen generation from solid state NaBH4 by using FeCl3 catalyst for portable proton exchange membrane fuel cell applications
Boran, Asli; Erkan, Serdar; Eroğlu, İnci (Elsevier BV, 2019-07-12)
Being a boron-based compound, sodium borohydride, NaBH4, is a convenient hydrogen storage material for applications like unmanned air vehicles. There are several concerns behind commercialization of hydrogen gas generator by NaBH4 hydrolysis systems. This study aims to contribute to the solution of the problems of NaBH4 hydrolysis system in three main ways. First, the usage of solid state NaBH4 enables to increase the durability and the gravimetric H-2 storage capacity of the system in order to meet US DOE ...
Transition metal nanoparticle catalysts in releasing hydrogen from the methanolysis of ammonia borane
Özkar, Saim (Elsevier BV, 2020-03-13)
Ammonia borane (H3N center dot BH3, AB) is one of the promising hydrogen storage materials due to high hydrogen storage capacity (19.6% wt), high stability in solid state as well as in solution and nontoxicity. The methanolysis of AB is an alternative way of releasing H-2 due to many advantages over the hydrolysis such as having high stability against self releasing hydrogen gas. Here we review the reports on using various noble or non-noble metal(0) catalysts for H-2 release from the methanolysis of AB. Ni...
Enhancement of hydrogen storage capacity of multi-walled carbon nanotubes with palladium doping prepared through supercritical CO2 deposition method
ERÜNAL, EBRU; Ulusal, Fatma; ASLAN, MUSTAFA YASİN; GÜZEL, BİLGEHAN; Üner, Deniz (Elsevier BV, 2018-06-07)
Pd doped Multi-Walled Carbon Nanotubes were prepared via supercritical carbon dioxide deposition method in order to enhance the hydrogen uptake capacity of carbon nanotubes at ambient conditions. A new bipyridyl precursor that enables reduction at moderate conditions was used during preparation of the sample. Both XRD analyses and TEM images confirmed that average Pd nanoparticle size distribution was around 10 nm. Hydrogen adsorption and desorption experiments at room temperature with very low pressures (0...
Citation Formats
K. Ö. Köse and M. K. Aydınol, “Chemical and structural optimization of ZnCl2 activated carbons via high temperature CO2 treatment for EDLC applications,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, pp. 18607–18616, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41194.