Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
All 3-D Printed Free-Space Setup for Microwave Dielectric Characterization of Materials
Date
2018-08-01
Author
Hajisaeid, Ehsan
Dericioğlu, Arcan Fehmi
Akyurtlu, Alkim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
8
views
0
downloads
In this paper, the development of an all 3-D printed wide band (2-18 GHz) free-space measurement system for characterizing the complex dielectric properties of flexible as well as rigid materials was demonstrated. Each part of the setup was designed and simulated precisely to show the effect of the 3-D printed quasi-optical lenses placed in front of the wide band ridged horn antennas on the beam and radiation pattern. More than 10 parts of the setup were 3-D printed using two different 3-D printers, and the parts were assembled together with precise alignment. The method used to analytically extract the dielectric properties was explained in detail, and the analytical S-parameters were compared with experimental S-parameters for various plastic materials to verify the measurement system. Four types of commercially available materials: polyimide film (Kapton), liquid crystalline polymer sheet (LCP), ceramic-filled polytetrafluoroethylene composites (R03035), and polypropylene with different thicknesses were characterized, and obtained dielectric constant and loss tangent values were compared with the data available from the vendors.
Subject Keywords
Instrumentation
,
Electrical and Electronic Engineering
URI
https://hdl.handle.net/11511/38518
Journal
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
DOI
https://doi.org/10.1109/tim.2018.2805962
Collections
Department of Metallurgical and Materials Engineering, Article