Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Quantitative analysis of the influence of strain hardening on equal channel angular pressing process
Date
2010-05-01
Author
ŞİMŞİR, Caner
Karpuz, Pinar
Gür, Cemil Hakan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
80
views
0
downloads
Cite This
Equal channel angular pressing is a promising severe plastic deformation method. The objective is to achieve high and homogeneous deformation in the workpiece. However, corner gap formed during the process has a pronounced effect on strain homogeneity and should be taken into account for proper die design. Although there exits several publications reporting the effect of strain hardening behavior of the workpiece on corner gap formation, the literature lacks a quantitative study on the subject. In this study, the effects of strain hardening characteristics of the material, strain hardening coefficient (K) and exponent (n) of Hollomon's law, on corner gap formation and strain homogeneity in equal channel angular pressing process were investigated quantitatively by finite element method. The results were compared with the upper bound analysis for the verification of the finite element findings. A series of numerical simulations showed that the process performance can be improved by modifying the die corner curvature accordingly, without running time consuming simulations.
Subject Keywords
General Physics and Astronomy
,
General Materials Science
,
General Computer Science
,
Mechanics of Materials
,
General Chemistry
,
Computational Mathematics
URI
https://hdl.handle.net/11511/38835
Journal
COMPUTATIONAL MATERIALS SCIENCE
DOI
https://doi.org/10.1016/j.commatsci.2010.02.032
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Investigating the effects of hardening of aluminium alloys on equal-channel angular pressing-A finite-element study
Karpuz, P.; Simsir, C.; Gür, Cemil Hakan (Elsevier BV, 2009-03-15)
Equal-channel angular pressing (ECAP) is a promising severe plastic deformation method for production of ultrafine-grained bulk metals and alloys with considerably improved mechanical properties. In this study, numerical experiments were carried out to investigate the effect of strain hardening of aluminum alloys on the process performance of ECAP via finite element modeling. In the constitutive model, isothermal-plane strain, frictionless condition was assumed. The numerical results showed that strain hard...
Mechanical and microstructural characterization of 6061 aluminum alloy strips severely deformed by Dissimilar Channel Angular Pressing
Tan, Euren; KİBAR, Alp Aykut; Gür, Cemil Hakan (Elsevier BV, 2011-04-01)
Dissimilar Channel Angular Pressing (DCAP) is a severe plastic deformation technique to improve the mechanical properties of flat products by producing ultrafine grains. In this study, the changes in the microstructure and mechanical properties of 6061 Al-alloy strips deformed by various numbers of DCAP passes were investigated. Some DCAPed samples were also held at 200 degrees C and 350 degrees C to investigate the effect of post-annealing. Mechanical properties were determined by hardness and tension test...
Dimensional analysis of the thermomechanical problem arising during through-hardening of cylindrical steel components
Şimşir, Caner; Hoffmann, Franz; Zoch, Hans-Werner (Elsevier BV, 2010-09-01)
This article concerns the dimensional analysis of the complex thermomechanical problem arising during through-hardening of cylindrical steel components. A complete and independent set of physically based dimensionless numbers was derived using the weak formulation method and the individual effects of dimensionless numbers with sensitive material parameters were investigated by finite element simulations. The results demonstrate potential of the approach in simplification of the model and the identification ...
Prediction of forming limit curve at fracture for sheet metal using new ductile fracture criterion
Dizaji, Shahram Abbasnejad; Darendeliler, Haluk; KAFTANOĞLU, BİLGİN (Elsevier BV, 2018-05-01)
The application of ductile fracture criteria (DFCs) in numerical analysis of sheet metal forming processes can lead to the accurate determination of the fracture initiation. In this study, a new uncoupled ductile fracture criterion (DFC) has been developed which considers the effects of material parameters on the forming limit curves (FLCs) and can be easily implemented in the finite element codes. Two different constitutive models have been employed with the new DFC in order to evaluate the results obtaine...
Analyzing Fe-Zn system using molecular dynamics, evolutionary neural nets and multi-objective genetic algorithms
Bhattacharya, Baidurya; Kumar, G. R. Dinesh; Agarwal, Akash; Erkoç, Şakir; Singh, Arunima; Chakraborti, Nirupam (Elsevier BV, 2009-10-01)
Failure behavior of Zn coated Fe is simulated through molecular dynamics (MD) and the energy absorbed at the onset of failure along with the corresponding strain of the Zn lattice are computed for different levels of applied shear rate. temperature and thickness. Data-driven models are constructed by feeding the MD results to an evolutionary neural network. The outputs of these neural networks are utilized to carry out a multi-objective optimization through genetic algorithms, where the best possible tradeo...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. ŞİMŞİR, P. Karpuz, and C. H. Gür, “Quantitative analysis of the influence of strain hardening on equal channel angular pressing process,”
COMPUTATIONAL MATERIALS SCIENCE
, pp. 633–639, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38835.