Quantitative analysis of the influence of strain hardening on equal channel angular pressing process

2010-05-01
ŞİMŞİR, Caner
Karpuz, Pinar
Gür, Cemil Hakan
Equal channel angular pressing is a promising severe plastic deformation method. The objective is to achieve high and homogeneous deformation in the workpiece. However, corner gap formed during the process has a pronounced effect on strain homogeneity and should be taken into account for proper die design. Although there exits several publications reporting the effect of strain hardening behavior of the workpiece on corner gap formation, the literature lacks a quantitative study on the subject. In this study, the effects of strain hardening characteristics of the material, strain hardening coefficient (K) and exponent (n) of Hollomon's law, on corner gap formation and strain homogeneity in equal channel angular pressing process were investigated quantitatively by finite element method. The results were compared with the upper bound analysis for the verification of the finite element findings. A series of numerical simulations showed that the process performance can be improved by modifying the die corner curvature accordingly, without running time consuming simulations.
COMPUTATIONAL MATERIALS SCIENCE

Suggestions

Investigating the effects of hardening of aluminium alloys on equal-channel angular pressing-A finite-element study
Karpuz, P.; Simsir, C.; Gür, Cemil Hakan (Elsevier BV, 2009-03-15)
Equal-channel angular pressing (ECAP) is a promising severe plastic deformation method for production of ultrafine-grained bulk metals and alloys with considerably improved mechanical properties. In this study, numerical experiments were carried out to investigate the effect of strain hardening of aluminum alloys on the process performance of ECAP via finite element modeling. In the constitutive model, isothermal-plane strain, frictionless condition was assumed. The numerical results showed that strain hard...
Mechanical and microstructural characterization of 6061 aluminum alloy strips severely deformed by Dissimilar Channel Angular Pressing
Tan, Euren; KİBAR, Alp Aykut; Gür, Cemil Hakan (Elsevier BV, 2011-04-01)
Dissimilar Channel Angular Pressing (DCAP) is a severe plastic deformation technique to improve the mechanical properties of flat products by producing ultrafine grains. In this study, the changes in the microstructure and mechanical properties of 6061 Al-alloy strips deformed by various numbers of DCAP passes were investigated. Some DCAPed samples were also held at 200 degrees C and 350 degrees C to investigate the effect of post-annealing. Mechanical properties were determined by hardness and tension test...
Dimensional analysis of the thermomechanical problem arising during through-hardening of cylindrical steel components
Şimşir, Caner; Hoffmann, Franz; Zoch, Hans-Werner (Elsevier BV, 2010-09-01)
This article concerns the dimensional analysis of the complex thermomechanical problem arising during through-hardening of cylindrical steel components. A complete and independent set of physically based dimensionless numbers was derived using the weak formulation method and the individual effects of dimensionless numbers with sensitive material parameters were investigated by finite element simulations. The results demonstrate potential of the approach in simplification of the model and the identification ...
Prediction of forming limit curve at fracture for sheet metal using new ductile fracture criterion
Dizaji, Shahram Abbasnejad; Darendeliler, Haluk; KAFTANOĞLU, BİLGİN (Elsevier BV, 2018-05-01)
The application of ductile fracture criteria (DFCs) in numerical analysis of sheet metal forming processes can lead to the accurate determination of the fracture initiation. In this study, a new uncoupled ductile fracture criterion (DFC) has been developed which considers the effects of material parameters on the forming limit curves (FLCs) and can be easily implemented in the finite element codes. Two different constitutive models have been employed with the new DFC in order to evaluate the results obtaine...
Analyzing Fe-Zn system using molecular dynamics, evolutionary neural nets and multi-objective genetic algorithms
Bhattacharya, Baidurya; Kumar, G. R. Dinesh; Agarwal, Akash; Erkoç, Şakir; Singh, Arunima; Chakraborti, Nirupam (Elsevier BV, 2009-10-01)
Failure behavior of Zn coated Fe is simulated through molecular dynamics (MD) and the energy absorbed at the onset of failure along with the corresponding strain of the Zn lattice are computed for different levels of applied shear rate. temperature and thickness. Data-driven models are constructed by feeding the MD results to an evolutionary neural network. The outputs of these neural networks are utilized to carry out a multi-objective optimization through genetic algorithms, where the best possible tradeo...
Citation Formats
C. ŞİMŞİR, P. Karpuz, and C. H. Gür, “Quantitative analysis of the influence of strain hardening on equal channel angular pressing process,” COMPUTATIONAL MATERIALS SCIENCE, pp. 633–639, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38835.