Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Concurrent Learning Enabled Adaptive Limit Detection for Active Pilot Cueing
Date
2014-09-01
Author
Gursoy, Gonenc
Yavrucuk, İlkay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
15
views
0
downloads
Neural-network-based adaptive dynamic models are commonly used to estimate allowable control travel and the proximity to a limiting flight condition in the design of advanced envelope protection algorithms for fly-by-wire aircraft. In this paper, linear models are compensated with adaptive neural networks, which use instantaneous sensor data as well as past flight history information for concurrent learning. A law for collecting appropriate training data into the history stack is established. It is observed that using the proposed time history data for online neural network training provides more accurate dynamic trim and control limit predictions compared to using instantaneous sensor data only. Simulation results for a fixed-wing aircraft during maneuvers show comparisons between the different adaptation schemes.
Subject Keywords
Smart-gain concepts
URI
https://hdl.handle.net/11511/38960
Journal
JOURNAL OF AEROSPACE INFORMATION SYSTEMS
DOI
https://doi.org/10.2514/1.i010205
Collections
Department of Aerospace Engineering, Article