Symplectic fillings of lens spaces as Lefschetz fibrations

Download
2016-01-01
We construct a positive allowable Lefschetz fibration over the disk on any minimal (weak) symplectic filling of the canonical contact structure on a lens space. Using this construction we prove that any minimal symplectic filling of the canonical contact structure on a lens space is obtained by a sequence of rational blowdowns from the minimal resolution of the corresponding complex two-dimensional cyclic quotient singularity.
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY

Suggestions

Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes
Lefloch, Philippe G.; Okutmuştur, Baver; Neves, Wladimir (Springer Science and Business Media LLC, 2009-07-01)
Following Ben-Artzi and LeFloch, we consider nonlinear hyperbolic conservation laws posed on a Riemannian manifold, and we establish an L (1)-error estimate for a class of finite volume schemes allowing for the approximation of entropy solutions to the initial value problem. The error in the L (1) norm is of order h (1/4) at most, where h represents the maximal diameter of elements in the family of geodesic triangulations. The proof relies on a suitable generalization of Cockburn, Coquel, and LeFloch's theo...
Imbedding of power series spaces and spaces of analytic functions
Aytuna, A.; Krone, J.; Terzioĝlu, T. (Springer Science and Business Media LLC, 1990-12)
The diametral dimension of a nuclear Fréchet spaceE, which satisfies (DN) and (Ω), is related to power series spaces Λ1(ε) and Λ∞(ε) for some exponent sequence ε. It is proved thatE contains a complemented copy of Λ∞(ε) provided the diametral dimensions ofE and Λ∞(ε) are equal and ε is stable. Assuming Λ1(ε) is nuclear, any subspace of Λ1(ε) which satisfies (DN), can be imbedded intoE. Applications of these results to spaces of analytic functions are given.
Finite element error analysis of a variational multiscale method for the Navier-Stokes equations
Volker, John; Kaya Merdan, Songül (Springer Science and Business Media LLC, 2008-01-01)
The paper presents finite element error estimates of a variational multiscale method (VMS) for the incompressible Navier-Stokes equations. The constants in these estimates do not depend on the Reynolds number but on a reduced Reynolds number or on the mesh size of a coarse mesh.
Legendrian realization in convex Lefschetz fibrations and convex stabilizations
Akbulut, Selman; Arıkan, Mehmet Fırat (Walter de Gruyter GmbH, 2015-05-01)
We show that, up to a Liouville homotopy and a deformation of compact convex Lefschetz fibrations on W, any Lagrangian submanifold with trivial first de Rham cohomology group, embedded on a (symplectic) page of the (induced) convex open book on partial derivative W, can be assumed to be Legendrian in partial derivative W with the induced contact structure. This can be thought as the extension of Giroux's Legendrian realization (which holds for contact open books) for the case of convex open books. We also s...
Noncomplex smooth 4-manifolds with Lefschetz fibrations
Korkmaz, Mustafa (2001-01-01)
For every integer g ≥ 2 there exist infinitely many pairwise nonhomeomorphic smooth 4-manifolds admitting genus-g Lefschetz fibration over S2 but not carrying any complex structure. This extends a recent result of Ozbagci and Stipsicz.
Citation Formats
M. L. Bhupal, “Symplectic fillings of lens spaces as Lefschetz fibrations,” JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, pp. 1515–1535, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38993.