Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Tight contact structures on hyperbolic three-manifolds
Download
index.pdf
Date
2017-11-01
Author
Arıkan, Mehmet Fırat
Secgin, Merve
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
9
views
7
downloads
Let Sigma(g) denote a closed orientable surface of genus g >= 2. We consider a certain infinite family of Sigma(g)-bundles over circle whose monodromies are taken from some collection of pseudo-Anosov diffeomorphisms. We show the existence of tight contact structure on every closed 3-manifold obtained via rational r-surgery along a section of any member of the family whenever r not equal 2g - 1. Combining with Thurston's hyperbolic Dehn surgery theorem, we obtain infinitely many hyperbolic closed 3-manifolds admitting tight contact structures.
Subject Keywords
Geometry and Topology
URI
https://hdl.handle.net/11511/39069
Journal
TOPOLOGY AND ITS APPLICATIONS
DOI
https://doi.org/10.1016/j.topol.2017.09.020
Collections
Department of Mathematics, Article