Efficient hybrid discrete Fourier transform-moment method for fast analysis of large rectangular arrays

2002-02-01
Chou, HT
Ho, HK
Pathak, PH
Nepa, P
Aydın Çivi, Hatice Özlem
A novel approach combining the moment method (MoM) and the discrete Fourier transform (DFT) is developed for the fast analysis of electromagnetic (EM) radiation/scattering from electrically large, finite, planar rectangular arrays. In particular, the unknown array distribution to be solved is represented in terms of the DFT within the MoM for a given array excitation. The proposed DFT-MoM approach for large arrays has the advantage that it can overcome the inefficiency of the conventional MoM approach by drastically reducing the number of unknowns. The latter is possible because only a relatively few DFT terms are significant in this DFT-MoM. A useful criterion to select significant DFT terms is described. Numerical results are presented to indicate the efficiency and accuracy of the DFT-MoM analysis for determining the array distribution and the radiation pattern of large rectangular arrays with uniform excitation. It is found that the efficiency and accuracy of the DFT-MoM increases dramatically with an increase in array size. Furthermore, the DFT representation employed within the MoM can provide an asymptotic closed form solution for both the near and far fields of the array, which can be described in the ray format of the uniform geometrical theory of diffraction (UTD).
IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION

Suggestions

Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems
Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2008-08-01)
We present fast and accurate solutions of large-scale scattering problems involving three-dimensional closed conductors with arbitrary shapes using the multilevel fast multipole algorithm (MLFMA). With an efficient parallelization of MLFMA, scattering problems that are discretized with tens of millions of unknowns are easily solved on a cluster of computers. We extensively investigate the parallelization of MLFMA, identify the bottlenecks, and provide remedial procedures to improve the efficiency of the imp...
Performance Enhancement of the Single-Phase Series Active Filter by Employing the Load Voltage Waveform Reconstruction and Line Current Sampling Delay Reduction Methods
Senturk, Osman S.; Hava, Ahmet Masum (Institute of Electrical and Electronics Engineers (IEEE), 2011-08-01)
This paper proposes the waveform reconstruction method (WRM), which is utilized in the single-phase series active filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line current sampling delay reduction method, a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous-reference...
Extension of forward-backward method with DFT-based acceleration algorithm for the efficient analysis of large periodic arrays with arbitrary boundaries
Aydın Çivi, Hatice Özlem; Chou, HT (Wiley, 2005-11-05)
An extension of the discrete Fourier transform (DFT)-based forward-backward algorithm is developed using the virtual-element approach to provide a fast and accurate analysis of electromagnetic radiation/scattering front electrically large, planar, periodic, finite (phased) arrays with arbitrary boundaries. Both the computational complexity and storage requirements of this approach are O(N-tot) (N-tot is the total number of unknowns). The numerical results for both printed and freestanding dipole array's wit...
Derivation of length extension formulas for complementary sets of sequences using orthogonal filterbanks
Candan, Çağatay (Institution of Engineering and Technology (IET), 2006-11-23)
A method for the construction of complementary sets of sequences using polyphase representation of orthogonal filterbanks is presented. It is shown that the case of two-channel filterbanks unifies individually derived length extension formulas for complementary sequences into a common framework and the general M-channel case produces novel formulas for the extension of complementary sets of sequences. The presented technique can also be used to generate polyphase and multilevel sequences.
Hybrid connection of RF MEMS and SMT components in an impedance tuner
Unlu, Mehmet; Topalli, Kagan; Atasoy, Halil Ibrahim; Demir, Şimşek; Aydın Çivi, Hatice Özlem; Akın, Tayfun (Elsevier BV, 2010-01-01)
This paper presents a systematic construction of a model for a hybrid connected RF MEMS and SMT components in a reconfigurable impedance tuner. The double stub hybrid impedance tuner which employs a high number of MEMS switches is selected to demonstrate the feasibility of the connections. In the hybrid tuner, MEMS switches are actuated with DC bias signals, where SMT resistors de-couple RF from the DC lines. The hybrid tuner is realized in two steps, where the MEMS impedance tuner is fabricated on a glass ...
Citation Formats
H. Chou, H. Ho, P. Pathak, P. Nepa, and H. Ö. Aydın Çivi, “Efficient hybrid discrete Fourier transform-moment method for fast analysis of large rectangular arrays,” IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, pp. 1–6, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39077.