Bivariate polynomial mappings associated with simple complex Lie algebras

Download
2016-11-01
There are three families of bivariate polynomial maps associated with the rank-2 simple complex Lie algebras A(2), B-2 congruent to C-2 and G(2). It is known that the bivariate polynomial map associated with A(2) induces a permutation of F-q(2) if and only if gcd(k, q(3) - 1) = I. for s = 1, 2, 3. In this paper, we give similar criteria for the other two families. As an application, a counterexample is given to a conjecture posed by Lidl and Wells about the generalized Schur's problem.
JOURNAL OF NUMBER THEORY

Suggestions

Value sets of bivariate folding polynomials over finite fields
Küçüksakallı, Ömer (2018-11-01)
We find the cardinality of the value sets of polynomial maps associated with simple complex Lie algebras B-2 and G(2) over finite fields. We achieve this by using a characterization of their fixed points in terms of sums of roots of unity.
Value sets of folding polynomials over finite fields
Küçüksakallı, Ömer (2019-01-01)
Let k be a positive integer that is relatively prime to the order of the Weyl group of a semisimple complex Lie algebra g. We find the cardinality of the value sets of the folding polynomials P-g(k)(x) is an element of Z[x] of arbitrary rank n >= 1, over finite fields. We achieve this by using a characterization of their fixed points in terms of exponential sums.
Affine Equivalency and Nonlinearity Preserving Bijective Mappings over F-2
Sertkaya, Isa; Doğanaksoy, Ali; Uzunkol, Osmanbey; Kiraz, Mehmet Sabir (2014-09-28)
We first give a proof of an isomorphism between the group of affine equivalent maps and the automorphism group of Sylvester Hadamard matrices. Secondly, we prove the existence of new nonlinearity preserving bijective mappings without explicit construction. Continuing the study of the group of nonlinearity preserving bijective mappings acting on n-variable Boolean functions, we further give the exact number of those mappings for n <= 6. Moreover, we observe that it is more beneficial to study the automorphis...
Automorphisms of curve complexes on nonorientable surfaces
Atalan, Ferihe; Korkmaz, Mustafa (2014-01-01)
For a compact connected nonorientable surface N of genus g with n boundary components, we prove that the natural map from the mapping class group of N to the automorphism group of the curve complex of N is an isomorphism provided that g + n >= 5. We also prove that two curve complexes are isomorphic if and only if the underlying surfaces are diffeomorphic.
Prime graphs of solvable groups
Ulvi , Muhammed İkbal; Ercan, Gülin; Department of Electrical and Electronics Engineering (2020-8)
If $G$ is a finite group, its prime graph $Gamma_G$ is constructed as follows: the vertices are the primes dividing the order of $G$, two vertices $p$ and $q$ are joined by an edge if and only if $G$ contains an element of order $pq$. This thesis is mainly a survey that gives some important results on the prime graphs of solvable groups by presenting their proofs in full detail.
Citation Formats
Ö. Küçüksakallı, “Bivariate polynomial mappings associated with simple complex Lie algebras,” JOURNAL OF NUMBER THEORY, pp. 433–451, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39430.