Hide/Show Apps

Value sets of folding polynomials over finite fields

Let k be a positive integer that is relatively prime to the order of the Weyl group of a semisimple complex Lie algebra g. We find the cardinality of the value sets of the folding polynomials P-g(k)(x) is an element of Z[x] of arbitrary rank n >= 1, over finite fields. We achieve this by using a characterization of their fixed points in terms of exponential sums.