Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Adsorption behaviour of shale gas reservoirs
Date
2018-01-01
Author
Merey, Sukru
Sınayuç, Çağlar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
263
views
0
downloads
Cite This
Experimental adsorption measurements for one shale sample were conducted at 25 degrees C, 50 degrees C and 75 degrees C up to 2,000 psia by using pure methane (CH4) and pure carbon dioxide (CO2) to understand the behaviour of CH4 and CO2 adsorption on shales. The effects of temperature and pressure on CH4 and CO2 adsorption on the shale sample were observed. When temperature decreases from 75 degrees C to 25 degrees C, the adsorption capacity increases for both CH4 and CO2 adsorption. As pressure increases, adsorption capacity increases then become constant for CH4 adsorption. However, for CO2 adsorption, adsorption increases with pressure until certain value then it decreases suddenly. By using experimental adsorption capacities, adsorption behaviour of shale gas reservoirs was observed.
Subject Keywords
Adsorption
,
Shale gas
,
CH4 adsorption
,
CO2 adsorption
,
CO2 sequestration
URI
https://hdl.handle.net/11511/39437
Journal
INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY
DOI
https://doi.org/10.1504/ijogct.2018.10010677
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
GAS-IN-PLACE CALCULATIONS IN SHALE GAS RESERVOIRS USING EXPERIMENTAL ADSORPTION DATA WITH ADSORPTION MODELS
Merey, Sukru; Sınayuç, Çağlar (2016-09-01)
In this research, experimental adsorption measurements for a Dadas shale sample were conducted at various pressures (up to 13 790 kPa (2000 psia)) and temperatures (25, 50, and 75 degrees C) using pure methane (CH4). The effects of temperature and pressure on adsorption were observed. As pressure increases, CH4 adsorption increases. However, as temperature increases, CH4 adsorption decreases. Moreover, by using Langmuir isotherm and Ono-Kondo models, experimental adsorption results were evaluated and adsorp...
Adsorption properties of a natural zeolite-water pair for use in adsorption cooling cycles
Solmus, Ismail; Yamali, Cemil; KAFTANOĞLU, BİLGİN; Baker, Derek Keıth; Caglar, Ahmet (2010-06-01)
The equilibrium adsorption capacity of water on a natural zeolite has been experimentally determined at different zeolite temperatures and water vapor pressures for use in an adsorption cooling system. The Dubinin-Astakhov adsorption equilibrium model is fitted to experimental data with an acceptable error limit. Separate correlations are obtained for adsorption and desorption processes as well as a single correlation to model both processes. The isosteric heat of adsorption of water on zeolite has been cal...
Analysis of carbon dioxide sequestration in shale gas reservoirs by using experimental adsorption data and adsorption models
Merey, Sukru; Sınayuç, Çağlar (2016-11-01)
For carbon dioxide (CO2) sequestration in depleted shale gas reservoirs or CO2 injection as an enhanced shale gas recovery technique, it is important to understand the adsorption mechanism in these reservoirs. In this study, experimental adsorption measurements for Dadas shale samples were conducted at 25 degrees C, 50 degrees C, and 75 degrees C up to approximately 2000 psia by using pure CO2 (maximum adsorption capacity 0.211 mmol/g at 25 degrees C) and pure methane (CH4) (maximum adsorption capacity 0.04...
Experimental investigation of carbon dioxide injection effects on methane-propane-carbon dioxide mixture hydrates
Abbasov, Abbas; Merey, Sukru; Parlaktuna, Mahmut (2016-08-01)
In this research, first, hydrate with high saturation in porous media (sand sediments) was formed in fully filled high pressure cell by using a mixture of the following gases at 4 degrees C: methane (CH4), propane (C3H8) and carbon dioxide (CO2). The feed mole percent of the gases used was selected as follows: CH4 (95%), C3H8 (3%), CO2 (2%). This selection was made in order to form natural gas hydrate of thermogenic origin (sII type hydrate). Thereafter, CO2 injection into the high saturation hydrate media ...
Numerical investigation of coupled heat and mass transfer inside the adsorbent bed of an adsorption cooling unit
Solmus, Ismail; Rees, D. Andrew S.; Yamali, Cemil; Baker, Derek Keıth; KAFTANOĞLU, BİLGİN (2012-05-01)
In this study, the influence of several design parameters on the transient distributions of temperature, pressure and amount adsorbed in the radial direction of a cylindrical adsorbent bed of an adsorption cooling unit using silica gel/water have been investigated numerically. For this purpose, a transient one-dimensional local thermal non-equilibrium model that accounts for both internal and external mass transfer resistances has been developed using the local volume averaging method. For the conditions in...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Merey and Ç. Sınayuç, “Adsorption behaviour of shale gas reservoirs,”
INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY
, pp. 172–188, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39437.