Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Methodology for Optimal Layout Design of Pressure Cells for Concrete Faced Rockfill Dams
Date
2018-08-01
Author
Arı, Onur
Yanmaz, Ali Melih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
248
views
0
downloads
Cite This
In this study, a methodology for optimal layout design of pressure cells for concrete faced rockfill dams is developed. A representative dimensionless stress distribution model was formed for obtaining the magnitudes and location of different stress zones as a function of dam height. This information enabled development of a procedure for proper location and the number of pressure cells throughout the dam body. A vertical placement algorithm based on error minimization was first developed, which is followed by an approach to find the number and location of pressure cells on a particular elevation of the dam body. The effects of face slab cracking and earthquake are interpreted. Furthermore, the performance of the proposed model was also tested when instruments are installed to different elevations in the dam body than those recommended by the model developed. The proposed optimization scheme provides a basis for economical layout design of pressure cells with sufficient information allowing realistic assessment of the structural behavior. The application of the proposed model is illustrated for some existing dams. It is observed that this algorithm gives satisfactory results.
Subject Keywords
Civil and Structural Engineering
URI
https://hdl.handle.net/11511/39463
Journal
KSCE JOURNAL OF CIVIL ENGINEERING
DOI
https://doi.org/10.1007/s12205-017-1991-x
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Assessment of overtopping reliability and benefits of a flood detention dam
Yanmaz, Ali Melih (Canadian Science Publishing, 2008-10-01)
There is a growing tendency to assess safety levels of existing dams and to design new dams using probabilistic approaches according to project characteristics and site-specific conditions. This study is a probabilistic assessment of the overtopping reliability of a dam, which will be designed for flood detention purpose, and will compute the benefits that can be gained as a result of the implementation of this dam. In a case study, a bivariate flood frequency analysis was carried out using a five-parameter...
Upgrading of slab-column connections using fiber reinforced polymers
Binici, Barış (Elsevier BV, 2005-01-01)
The results of an experimental program on upgrading of reinforced concrete slab-column connections subjected to monotonic shear and unbalanced moment transfer are presented in this study. Externally installed carbon fiber reinforced polymer (CFRP) stirrups acting as shear reinforcement around the slab-column connection area were used with two patterns of CFRP arrangements. It was found that the proposed method resulted in punching shear capacity increases up to 60% relative to the specimen without any stren...
An integrated seismic hazard framework for liquefaction triggering assessment of earthfill dams' foundation soils
Ünsal Oral, Sevinç; Çetin, Kemal Önder; Department of Civil Engineering (2009)
Within the confines of this study, seismic soil liquefaction triggering potential of a dam foundation is assessed within an integrated probabilistic seismic hazard assessment framework. More specifically, the scheme presented hereby directly integrates effective stress-based seismic soil liquefaction triggering assessment with seismic hazard analysis framework, supported by an illustrative case. The proposed methodology successively, i) processes the discrete stages of probabilistic seismic hazard workflow ...
A Comparative Study of AISC-360 and EC3 Strength Limit States
Topkaya, Cem (Springer Science and Business Media LLC, 2011-03-01)
A study has been undertaken to evaluate the similarities and differences between the steel building design specifications used in the United States and Europe. Expressions for nominal strength presented in the AISC-360 Specification and the Eurocode 3 Specification were compared for fundamental limit states. In particular, rules for cross-section classification, tension members, compression members, I-shaped members subjected to flexure, 1-shaped members subjected to shear, and fasteners were studied. Resul...
Predicting the shear strength of reinforced concrete beams using artificial neural networks
Mansour, MY; Dicleli, Murat; Lee, JY; Zhang, J (Elsevier BV, 2004-05-01)
The application of artificial neural networks (ANNs) to predict the ultimate shear strengths of reinforced concrete (RC) beams with transverse reinforcements is investigated in this paper. An ANN model is built, trained and tested using the available test data of 176 RC beams collected from the technical literature. The data used in the ANN model are arranged in a format of nine input parameters that cover the cylinder concrete compressive strength, yield strength of the longitudinal and transverse reinforc...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Arı and A. M. Yanmaz, “A Methodology for Optimal Layout Design of Pressure Cells for Concrete Faced Rockfill Dams,”
KSCE JOURNAL OF CIVIL ENGINEERING
, pp. 2802–2809, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39463.