Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Hybrid Computational Method Based on Convex Optimization for Outlier Problems: Application to Earthquake Ground Motion Prediction
Download
index.pdf
Date
2016-01-01
Author
Yerlikaya-Ozkurt, Fatma
Askan Gündoğan, Ayşegül
Weber, Gerhard-Wilhelm
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
183
views
145
downloads
Cite This
Statistical modelling plays a central role for any prediction problem of interest. However, predictive models may give misleading results when the data contain outliers. In many real -world applications, it is important to identify and treat the outliers without direct elimination. To handle such issues, a hybrid computational method based on conic quadratic programming is introduced and employed on earthquake ground motion dataset. This method aims to minimize the impact of the outliers on regression estimators as well as handling the nonlinearity in the dataset. Results are compared against widely used parametric and nonparametric ground motion prediction models.
Subject Keywords
Applied Mathematics
,
Information Systems
URI
https://hdl.handle.net/11511/39537
Journal
INFORMATICA
DOI
https://doi.org/10.15388/informatica.2016.116
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
A Hybrid Computational Method based on Convex Optimizationfor Outlier Problems
Yerlikaya Ozkurt, Fatma; Askan Gündoğan, Ayşegül; Weber, Gerhard Wiehelm (2015-11-01)
Statistical modeling plays a central role for any prediction problem of interest.However, predictive models may give misleading results when the data containoutliers. In many applications, it is important to identify and treat the outlierswithout direct elimination. To handle such issues, a hybrid computational methodbased on conic quadratic programming is introduced and employed onearthquake ground motion data set. Results are compared against widely-usedground motion prediction models.
An algorithm to analyze stability of gene-expression patterns
Gebert, J; Latsch, M; Pickl, SW; Weber, Gerhard Wilhelm; Wunschiers, R (Elsevier BV, 2006-05-01)
Many problems in the field of computational biology consist of the analysis of so-called gene-expression data. The successful application of approximation and optimization techniques, dynamical systems, algorithms and the utilization of the underlying combinatorial structures lead to a better understanding in that field. For the concrete example of gene-expression data we extend an algorithm, which exploits discrete information. This is lying in extremal points of polyhedra, which grow step by step, up to a...
A metamodeling methodology involving both qualitative and quantitative input factors
Tunali, S; Batmaz, I (Elsevier BV, 2003-10-16)
This paper suggests a methodology for developing a simulation metamodel involving both quantitative and qualitative factors. The methodology mainly deals with various strategic issues involved in metamodel estimation, analysis, comparison, and validation. To illustrate how to apply the methodology, a regression metamodel is developed for a client-server computer system. In particular, we studied how the response time is affected by the quantum interval, the buffer size. and the total number of terminals whe...
A pattern classification approach for boosting with genetic algorithms
Yalabık, Ismet; Yarman Vural, Fatoş Tunay; Üçoluk, Göktürk; Şehitoğlu, Onur Tolga (2007-11-09)
Ensemble learning is a multiple-classifier machine learning approach which produces collections and ensembles statistical classifiers to build up more accurate classifier than the individual classifiers. Bagging, boosting and voting methods are the basic examples of ensemble learning. In this study, a novel boosting technique targeting to solve partial problems of AdaBoost, a well-known boosting algorithm, is proposed. The proposed system finds an elegant way of boosting a bunch of classifiers successively ...
A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem
Karasakal, Esra (Elsevier BV, 2017-12-01)
In this paper, multiple criteria sorting methods based on data envelopment analysis (DEA) are developed to evaluate research and development (R&D) projects. The weight intervals of the criteria are obtained from Interval Analytic Hierarchy Process and employed as the assurance region constraints of models. Based on data envelopment analysis, two threshold estimation models, and five assignment models are developed for sorting. In addition to sorting, these models also provide ranking of the projects. The de...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Yerlikaya-Ozkurt, A. Askan Gündoğan, and G.-W. Weber, “A Hybrid Computational Method Based on Convex Optimization for Outlier Problems: Application to Earthquake Ground Motion Prediction,”
INFORMATICA
, pp. 893–910, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39537.