Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A protein engineered to bind uranyl selectively and with femtomolar affinity
Date
2014-03-01
Author
Zhou, Lu
Bosscher, Mike
Zhang, Changsheng
Özçubukçu, Salih
Zhang, Liang
Zhang, Wen
Li, Charles J.
Liu, Jianzhao
Jensen, Mark P.
Lai, Luhua
He, Chuan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
172
views
0
downloads
Cite This
Uranyl (UO22+), the predominant aerobic form of uranium, is present in the ocean at a concentration of similar to 3.2 parts per 10(9) (13.7 nM); however, the successful enrichment of uranyl from this vast resource has been limited by the high concentrations of metal ions of similar size and charge, which makes it difficult to design a binding motif that is selective for uranyl. Here we report the design and rational development of a uranyl-binding protein using a computational screening process in the initial search for potential uranyl-binding sites. The engineered protein is thermally stable and offers very high affinity and selectivity for uranyl with a K-d of 7.4 femtomolar (fM) and >10,000-fold selectivity over other metal ions. We also demonstrated that the uranyl-binding protein can repeatedly sequester 30-60% of the uranyl in synthetic sea water. The chemical strategy employed here may be applied to engineer other selective metal-binding proteins for biotechnology and remediation applications.
Subject Keywords
General Chemistry
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/39566
Journal
NATURE CHEMISTRY
DOI
https://doi.org/10.1038/nchem.1856
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
A novel synthesis of optically active alpha-amino acids
Demir, Ayhan Sıtkı (Walter de Gruyter GmbH, 1997-01-01)
A new enantioselective synthesis of alpha- amino acids are described in which the key step is the enantioselective reduction of E, and Z furyl ketone oxime ethers with chiral boron complexes. The chirality of amino acid is fully controlled by appropriate choice of geometrical isomer of the oxime ether.
Rhodium(0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Gencturk, Serap; MORKAN, İzzet; Özkar, Saim (Royal Society of Chemistry (RSC), 2014-01-01)
Rhodium(0) nanoparticles supported on the surface of titanium dioxide (Rh(0)@TiO2) were in situ generated from the reduction of rhodium(III) ions impregnated on nanotitania during the hydrolysis of ammonia borane. They were isolated from the reaction solution by centrifugation and characterized by a combination of advanced analytical techniques. The results show that (i) highly dispersed rhodium(0) nanoparticles with sizes in the range 1.3-3.8 nm were formed on the surface of titanium dioxide, (ii) Rh(0)@Ti...
Synthesis of alpha-Fe2O3/TiO2 heterogeneous composites by the sol-gel process and their photocatalytic activity
Bouziani, Asmae; PARK, JONGEE; Öztürk, Abdullah (Elsevier BV, 2020-09-01)
alpha-Fe2O3/TiO2 heterogeneous composites were synthesized by the sol-gel process to increase the photocatalytic activity of TiO2. The structural, morphological, and optical characteristics of the composites were determined by X-ray diffraction, scanning electron microscope, and UV-vis diffuse reflectance spectroscopy. Results revealed that the incorporation of alpha-Fe2O3 to TiO2 widened the visible light absorption ability of TiO2. It was realized that the calcination temperature plays a crucial role in m...
A GRAIN MODEL FOR CATALYST TORTUOSITY
Doğu, Timur (Informa UK Limited, 1991-01-01)
A simple model was proposed for the prediction of tortuosity factor of porous solids with mono or bidispersed pore size distributions. Model predictions were presented in graphical form for quick estimation of tortuosity. The experimental tortuosity factors reported in the literature for porous solids of different pore structures and the corresponding predicted values showed good agreement.
Cytochrome P4501A and associated mixed-function oxidase induction in fish as a biomarker for toxic carcinogenic pollutants in the aquatic environment
Arinc, E; Sen, A; Bozcaarmutlu, A (Walter de Gruyter GmbH, 2000-06-01)
Polycyclic aromatic hydrocarbons (PAHs), dioxins, dibenzofurans, and polychlorinated biphenyls (PCBs) present in polluted environment induce cytochrome P4501A (CYP1A) isozyme in fish, which in turn results in a marked increased production of carcinogenic metabolites from PAHs. The induction of hepatic CYP1A in fish by certain classes of chemicals has been suggested as an early warning system, a "most sensitive biological response" for assessing environmental contamination conditions. This has implications f...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. Zhou et al., “A protein engineered to bind uranyl selectively and with femtomolar affinity,”
NATURE CHEMISTRY
, pp. 236–241, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39566.