Lateral Response Comparison of Unbonded Elastomeric Bearings Reinforced with Carbon Fiber Mesh and Steel

Download
2015-01-01
Naghshineh, Ali Karimzadeh
Akyüz, Uğurhan
Caner, Alp
The vertical and horizontal stiffness used in design of bearings have been established in the last few decades. At the meantime, applicability of the theoretical approach developed to estimate vertical stiffness of the fiber-reinforced bearings has been verified in different academic studies. The suitability of conventional horizontal stiffness equation developed for elastomeric material, mainly for steel-reinforced elastomeric bearings, has not been tested in detail for use of fiber-reinforced elastomeric bearings. In this research, lateral response of fiber mesh-reinforced elastomeric bearings has been determined through experimental tests and the results have been compared by corresponding values pertaining to the steel-reinforced bearings. Within the test program, eight pairs of fiber mesh-reinforced bearings and eight pairs of steel-reinforced bearings are subjected to different levels of compressive stress and cyclic shear strains. Fiber-reinforced elastomeric bearings may be more favorable to be used in seismic regions due to lower horizontal stiffness that can result in mitigation of seismic forces for levels of 100% shear strain. Damping properties of these types of fiber mesh-reinforced bearings depend mostly on the selection of elastomeric material compounds. Suggestions have been made for the lateral response of fiber-reinforced elastomeric bearings. It has also been determined that the classical equation for lateral stiffness based on linear elastic behavior assumptions developed for elastomeric bearings does not always apply to the fiber-reinforced ones.
SHOCK AND VIBRATION

Suggestions

Seismic retrofit of buildings with backbone dampers
Shaban, Nefize; Ozdemir, Seda; Caner, Alp; Akyüz, Uğurhan (2017-01-01)
Dampers have been effectively used in new designs and seismic retrofit of old structures in many parts of the world. The common seismic retrofit practice in Turkey is almost purely based on stiffening the structure with additional shear walls or adding braces to limit the excessive seismic drifts. Such an approach usually results in expensive interior works and enlargements of foundations. The stiffening of the structure typically results in attracting more seismic force. Utilization of dampers as seismic p...
Displacement amplification factors for steel eccentrically braced frames
Kusyilmaz, Ahmet; Topkaya, Cem (2015-02-01)
Inelastic deformation capacity of links is a factor that significantly influences design of steel eccentrically braced frames (EBFs). The link rotation angle is used to describe inelastic link deformation. The link rotation angle is generally calculated by making use of design story drifts that in turn are calculated by modifying the elastic displacements by a displacement amplification factor. This paper presents a numerical study undertaken to evaluate the displacement amplification factor given in ASCE7-...
Nonlinear vibration analysis of rotors supported by ball bearings
Bahan, Doğancan; Ciğeroğlu, Ender; Department of Mechanical Engineering (2019)
Performance of ball bearing-rotor systems is highly dependent on and often limited by characteristics of ball bearings. Ball bearings are nonlinear by their nature and this nonlinearity must be investigated rigorously to correctly predict vibration response of the system. The steady-state periodic response of rotor systems with nonlinear ball bearings is investigated. The rotor is modeled with the Finite Element Method. Nonlinear model for the bearings considers finite number of balls, bearing clearance and...
Experimental investigation of uplift on seismic base isolators /
Erkakan, Evren; Caner, Alp; Department of Civil Engineering (2014)
Elastomeric rubber bearings reinforced with steel shims, are used to provide structural support in vertical direction and allow horizontal movements for the structure subjected to earthquake and thermal loads. Generally, it is known that tensile stress or uplift may occur when the structure is subjected to strong ground motion or structure have large height-to-width aspect ratio to develop a stability concern subjected to lateral loads. The main focus of this research is to investigate the change in charact...
Nonlinear Dynamic Analysis of an Asymmetric Ball Bearing Rotor System
Bahan, Doğancan; Ciğeroğlu, Ender (2019-11-14)
Performance of ball bearing–rotor systems are highly dependent on and often limited by characteristics of ball bearings. Several studies are available in the literature, investigating varying compliance and subharmonic resonances of ball bearings. Most of the studies are carried out with rigid rotors to focus on modelling of the bearings. There exist few studies which take flexibility of rotors into account. Furthermore, even if the rotor flexibility is modelled, most of the time symmetrical rotors are cons...
Citation Formats
A. K. Naghshineh, U. Akyüz, and A. Caner, “Lateral Response Comparison of Unbonded Elastomeric Bearings Reinforced with Carbon Fiber Mesh and Steel,” SHOCK AND VIBRATION, pp. 0–0, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39664.