Target Tracking With Particle Filters Under Signal Propagation Delays

Download
2011-06-01
Signal propagation delays are hardly a problem for target tracking with standard sensors such as radar and vision due to the fact that the speed of light is much higher than the speed of the target. This contribution studies the case where the ratio of the target and the propagation speed is not negligible, as in the case of sensor networks with microphones, geophones or sonars for instance, where the signal speed in air, ground and water causes a state dependent and stochastic delay of the observations. The proposed approach utilizes an augmentation of the state vector with the propagation delay in a particle filtering framework to compensate for the negative effects of the delays. The model of the physics rules governing the propagation delays is used in interaction with the target motion model to yield an iterative prediction update step in the particle filter which is called the propagation delayed measurement particle filter (PDM-PF). The performance of PDM-PF is illustrated in a challenging target tracking scenario by making comparisons to alternative particle filters that can be used in similar cases.
IEEE TRANSACTIONS ON SIGNAL PROCESSING

Suggestions

Tracker-aware adaptive detection: An efficient closed-form solution for the Neyman-Pearson case
Aslan, Murat Samil; Saranlı, Afşar; Baykal, Buyurman (Elsevier BV, 2010-09-01)
A promising line of research for radar systems attempts to optimize the detector thresholds so as to maximize the overall performance of a radar detector-tracker pair. In the present work, we attempt to move in a direction to fulfill this promise by considering a particular dynamic optimization scheme which relies on a non-simulation performance prediction (NSPP) methodology for the probabilistic data association filter (PDAF), namely, the modified Riccati equation (MRE). By using a suitable functional appr...
Target tracking using delayed measurements with implicit constraints
Orguner, Umut (2008-07-03)
In target tracking, standard sensors as radar and EO/IR observe the target with a negligible delay, since the speed of light is much larger than the speed of the target. This contribution studies the case where the ratio of the target and the propagation speed is not negligible, as is the case in sensor networks with microphones, geophones or sonars for instance, where the speed of air, ground waves and water cause a state dependent and stochastic delay of the observations. The proposed approach utilizes a ...
Antenna patterns for detecting slowly moving targets in two channel gmti processing
Yıldırım, Gökhan; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2010)
Ground Moving Target Indicator (GMTI) is a well-known and widely used signal processing method in airborne and spaceborne radars. In airborne radar and GMTI literature, many radar designs and signal processing techniques have been developed to increase the detection and estimation performance under heavy interference conditions. The motion of the aircraft on which the radar is mounted, high altitudes and ranges, targets with low radar cross sections and slowly moving targets complicates the problem of local...
Milimeterwave FMCW radar design
İçöz, Dilşad; Hızal, Altunkan; Department of Electrical and Electronics Engineering (2009)
In traffic radar system, Frequency Modulated Continuous Wave (FMCW) will be used since these radars are preferred in short distance and high range resolution systems. The system to be constructed is not only a system operating with Doppler principle and detection of speed; on the contrary a functional radar is planned to be produced. In various traffic radars in use, Doppler shift constituted by the targets causing high reflection within detection field is measured and the measured speed corresponding to th...
Linear prediction for single snapshot multiple target doppler estimation under possibly moving radar clutter
Öztan, Baha Baran; Tanık, Yalçın; Department of Electrical and Electronics Engineering (2008)
We have devised a processor for pulsed Doppler radars for multi-target detection in same folded range under land and moving clutter. To this end, we have investigated the estimation of parameters, i.e., frequencies, amplitudes, and phases, of complex exponentials that model target echoes under radar clutter characterized by antenna scanning modulation with observation limited to single snapshot, i.e., one burst. The Maximum Likelihood method of estimation is presented together with the bounds on estimates, ...
Citation Formats
U. Orguner, “Target Tracking With Particle Filters Under Signal Propagation Delays,” IEEE TRANSACTIONS ON SIGNAL PROCESSING, pp. 2485–2495, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39689.