Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Body waves in poroelastic media saturated by two immiscible fluids
Download
index.pdf
Date
1996-11-10
Author
Tuncay, Kağan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
223
views
0
downloads
Cite This
A study of body waves in elastic porous media saturated by two immiscible Newtonian fluids is presented. We analytically show the existence of three compressional waves and one rotational wave in an infinite porous medium. The first and second compressional waves are analogous to the fast and slow compressional waves in Blot's theory. The third compressional wave is associated with the pressure difference between the fluid phases and dependent on the slope of capillary pressure-saturation relation. Effect of a second fluid phase on the fast and slow waves is numerically investigated for Massillon sandstone saturated by air and water phases. A peak in the attenuation of the first and second compressional waves is observed at high water saturations. Both the first and second compressional waves exhibit a drop in the phase velocity in the presence of air. The results are compared with the experimental data available in the literature. Although the phase velocity of the first compressional and rotational waves are well predicted by the theory, there is a discrepancy between the experimental and theoretical values of attenuation coefficients. The causes of discrepancy are explained based on experimental observations of other researchers.
Subject Keywords
Earth-Surface Processes
,
Ecology
,
Earth and Planetary Sciences (miscellaneous)
,
Space and Planetary Science
,
Palaeontology
,
Forestry
,
Aquatic Science
,
Atmospheric Science
,
Soil Science
,
Geochemistry and Petrology
,
Geophysics
,
Oceanography
,
Water Science and Technology
URI
https://hdl.handle.net/11511/39829
Journal
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
DOI
https://doi.org/10.1029/96jb02297
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Body waves in fractured porous media saturated by two immiscible Newtonian fluids
Tuncay, Kağan (Springer Science and Business Media LLC, 1996-06-01)
A study of body waves in fractured porous media saturated by two fluids is presented. We show the existence of four compressional and one rotational waves. The first and third compressional waves are analogous to the fast and slow compressional waves in Riot's theory. The second compressional wave arises because of fractures, whereas the fourth compressional wave is associated with the pressure difference between the fluid phases in the porous blocks. The effects of fractures on the phase velocity and atten...
Wave propagation in fractured porous media saturated by two immiscible fluids
Corapcioglu, MY; Tuncay, Kağan (1998-01-01)
A study of wave propagation in fractured porous media saturated by two immiscible fluids is presented, based on the double-porosity concept. The macroscopic constitutive relations and mass and momentum balance equations are obtained by volume averaging the microscale balance and constitutive equations, and assuming small deformations. Momentum transfer terms are expressed in terms of intrinsic and relative permeabilities assuming the validity of Darcy's law in fractured porous media. In the simplest case, t...
Advantages of fine resolution SSTs for small ocean basins: Evaluation in the Black Sea
Kara, A. B.; Barron, C. N.; Wallcraft, A. J.; Oguz, T.; Casey, K. S. (American Geophysical Union (AGU), 2008-08-07)
This paper examines monthly variability of climatological mean sea surface temperature (SST) in the Black Sea. A total of eight products, including observation-and model-based SST climatologies, are formed and compared with each other. Some of the observation-based SST data sets include only satellite measurements, while others combine in situ temperatures, such as those from moored and drifter buoys, with satellite data. Climatologies for numerical weather prediction (NWP) model-based data sets are formed ...
Modeling the response of top-down control exerted by gelatinous carnivores on the Black Sea pelagic food web
Oguz, T; Ducklow, HW; Purcell, JE; Malanotte-Rizzoli, P (American Geophysical Union (AGU), 2001-03-15)
Recent changes in structure and functioning of the interior Black Sea ecosystem are studied by a series of simulations using a one-dimensional, vertically resolved, coupled physical-biochemical model. The simulations are intended to provide a better understanding of how the pelagic food web structure responds to increasing grazing pressure by gelatinous carnivores (medusae Aurelia aurita and ctenophore Mnemiopsis leidyi) during the past 2 decades. The model is first shown to represent typical eutrophic ecos...
Simulation of annual plankton productivity cycle in the Black Sea by a one-dimensional physical-biological model
Oğuz, Temel; Ducklow, H; MalanotteRizzoli, P; Tuğrul, Süleyman; Nezlin, NP; Ünlüata, Ü (American Geophysical Union (AGU), 1996-07-15)
The annual cycle of the plankton dynamics in the central Black Sea is studied by a one-dimensional vertically resolved physical-biological upper ocean model, coupled with the Mellor-Yamada level 2.5 turbulence closure scheme. The biological model involves interactions between the inorganic nitrogen (nitrate, ammonium), phytoplankton and herbivorous zooplankton biomasses, and detritus. Given a knowledge of physical forcing, the model simulates main observed seasonal and vertical characteristic features, in p...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Tuncay, “Body waves in poroelastic media saturated by two immiscible fluids,”
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
, pp. 25149–25159, 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39829.