Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Plasmon lifetime enhancement in a bright-dark mode coupled system
Download
index.pdf
Date
2020-01-16
Author
Yildiz, Bilge Can
Bek, Alpan
TAŞGIN, MEHMET EMRE
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
145
views
90
downloads
Cite This
Metallic nanoparticles can localize the incident light to hot spots as plasmon oscillations, where the intensity can be enhanced by up to four orders of magnitude. Even though the lifetime of plasmons is typically short, it can be increased via interactions with quantum emitters, e.g., spaser nanolasers. However, molecules can bleach in days. Here, we study the lifetime enhancement of plasmon excitations due to the coupling with longer-lifetime dark plasmon modes. We apply an analytical model based on harmonic oscillators to demonstrate that a coupled system of bright and dark plasmon modes decays more slowly than the bright mode alone. Furthermore, exact solutions of the three-dimensional Maxwell equations, i.e., finite-difference time domain, demonstrate that the lifetime of the coupled system significantly increases at the hot spot, which is not predictable by far-field response. The decay of the overall energy of such a coupled system, which can be extracted from experimental absorption measurements, is substantially different from the decay of the hot spot field. This observation enlightens the plasmonic applications in which the hot spot intensity enables the detection of the optical responses.
Subject Keywords
Gold
,
Dimer
,
Fluorescence
,
Nanoantennas
,
Excitation
URI
https://hdl.handle.net/11511/40015
Journal
PHYSICAL REVIEW B
DOI
https://doi.org/10.1103/physrevb.101.035416
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Reflectance spectra and refractive index of a Nd : YAG laser-oxidized Si surface
Aygun, G; Atanassova, E; Turan, Raşit; Babeva, T (Elsevier BV, 2005-02-15)
The reflectance spectra and refractive index of Nd:YAG laser-oxidized SiO2 layers with thicknesses from 15 to 75 nm have been investigated with respect to the laser beam energy density and substrate temperature. Thickness and refractive index of films have been determined from reflectance measurements at normal light incidence in the spectral range 300-800 nm. It was found that the oxide-growth conditions at higher substrate temperatures and laser powers greater than 3.36 J cm(-2) provides a better film qua...
Ensemble monte carlo study of nonequilibrium carrier dynamics in photo-excited p-i-n, structures
Guncer, SE; Ferry, DK (1996-04-01)
Light scattering from conduction electrons (or from valence holes) can give information on the time-resolved velocity distribution of nonequilibrium carriers. The experimental approach utilizes, e.g., Raman scattering from the single particles to ascertain the velocity distribution. Calculation of the distribution function through an ensemble Monte Carlo technique allows a comparison between the experiment and theory. Here, this is demonstrated with studies of a GaAs p-i-n structure embedded within cladding...
Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range
Celik, Umit L; KARCI, Ozgur; UYSALLI, Yigit; Özer, Hakkı Tunçay; Oral, Ahmet (2017-01-01)
We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the...
Dielectric and photo-dielectric properties of TlGaSeS crystals
Qasrawi, A. F.; Abu-Zaid, Samah F.; Ghanameh, Salam A.; Hasanlı, Nızamı (2014-05-01)
The room temperature, dark and photo-dielectric properties of the novel crystals TlGaSeS are investigated in the frequency, intensity and biasing voltage having ranges of similar to 1-120 MHz, 14-40 klux and 0-1 V, respectively. The crystals are observed to exhibit a dark high frequency effective dielectric constant value of similar to 10.65 x 10(3) with a quality factor of similar to 8.84 x 10(4) at similar to 120 MHz. The dielectric spectra showed sharp resonance-antiresonance peaks in the frequency range...
RAMAN-SPECTROSCOPY OF SOFT AND RIGID MODES IN FERROELECTRIC TLINS2
BURLAKOV, VM; RYABOV, AP; YAKHEEV, MP; VINOGRADOV, EA; MELNIK, NN; Hasanlı, Nızamı (Wiley, 1989-06-01)
Low‐frequency Raman spectra of a TlInS2 single crystal in the vicinity of a ferroelectric phase transition are reported. In the ferroelectric phase a soft mode interacting with some rigid modes is observed. The temperature dependence of the soft mode frequency is found to be proportional to (Tc – T)1/2. An unusual behaviour of the rigid mode (ω = 20 cm−1) is observed. This fact is interpreted in terms of inherent lattice defects which cause nonhomogeneous broadening.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. C. Yildiz, A. Bek, and M. E. TAŞGIN, “Plasmon lifetime enhancement in a bright-dark mode coupled system,”
PHYSICAL REVIEW B
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40015.