Statistical evaluation of the damage potential of earthquake ground motions

1998-01-01
This study focuses on the damage potential of earthquake ground motions based on the inelastic dynamic response of equivalent single degree of freedom structures. Their yield resistances are selected in accordance with seismic design codes. An index accounting for the accumulation of damage due to inelastic excursions is used to represent structural damage. A set of 94 ground motions are employed for this analysis, which are all scaled to the same peak ground acceleration of 0.4 g. Earthquake ground motions are classified with respect to both the ratio of peak velocity to peak acceleration (VIA ratio) and their effective excitation duration. The effect of these parameters on damage potential is investigated by using sensitivity analysis and probabilistic techniques. It is concluded that both V/A ratio and effective duration significantly influence the damage potential of earthquake ground motions, although they are not represented appropriately by the spectral definitions of earthquake excitations in seismic design codes.
STRUCTURAL SAFETY

Suggestions

Influence of peak ground velocity on seismic failure probability
Sucuoğlu, Haluk; Erberik, Murat Altuğ; Yücemen, Mehmet Semih (1999-06-10)
This study focuses on the damage potential of earthquake ground motions based on the inelastic dynamic response of equivalent single degree of freedom structures. Their yield resistances are selected in accordance with seismic design codes. An index accounting for the accumulation of damage due to inelastic excursions is used to represent structural damage. A set of 94 ground motions are employed for this analysis, which are all scaled to the same peak ground acceleration of 0.4 g. Earthquake ground motions...
Experimental evaluation of geomembrane / geotextile interface as base isolating system
Taheri Bonab, Amin; Gülerce, Zeynep; Kalpakcı, Volkan; Department of Civil Engineering (2016)
The objective of this study is to evaluate the effect of the composite liner seismic isolation system on the seismic response of small-to-moderate height structures. For this purpose, a building model with the natural frequency of 3.13 Hz (representing 3-4 story structures) was tested with and without the addition of composite liner system using the shaking table test set-up by employing harmonic and modified/ scaled ground motions. Experiment results showed that the composite liner seismic isolation system...
Estimation of earthquake damage probabilities for reinforced concrete buildings
Yücemen, Mehmet Semih (2003-05-13)
Due to uncertainties involved both in the occurrence of earthquakes and in structural response, earthquake damage prediction has to be treated in a probabilistic manner. In this study two statistical methods are presented for the prediction of potential seismic damage to low and mid-rise reinforced concrete buildings in Turkey. These methods are based on the utilization of damage probability matrices and reliability theory. The damage data compiled during recent earthquakes that occurred in Turkey are used ...
Analysis Methods for the Investigation of the Seismic Response of Concrete Dams
Aldemir, Alper; Yilmazturk, Sema Melek; Yucel, Ali Riza; Binici, Barış; Arıcı, Yalın; Akman, Altug (2015-01-01)
The consideratiOn of the dam-foundation-reservoir interaction is extremely important for estimating the seismic response of concrete gravity dams. Moreover, nonlinear analysis may be required for determining the possible risk associated with dams. In order to address these issues, DSI recently published the "Guidelines for Seismic Design of Concrete Dams". Authors who have contributed to the preparation of this document provide a perspective on the seismic safety/design of concrete dams and structural analy...
Equivalent linear analysis of seismic-isolated bridges subjected to near-fault ground motions with forward rupture directivity effect
Dicleli, Murat (2007-01-01)
This study encompasses the assessment of the equivalent linear (EL) analysis procedure for the design of seismic isolated bridges (SIB) subjected to near-fault ground motions with forward rupture directivity effect. The assessment procedure involves the comparison of the seismic response quantities obtained from EL analyses with those obtained from nonlinear time history (NLTH) analyses. The effect of several isolator and near-fault ground motion properties are considered in the assessment of the EL analysi...
Citation Formats
H. Sucuoğlu, A. Gezer, and M. A. Erberik, “Statistical evaluation of the damage potential of earthquake ground motions,” STRUCTURAL SAFETY, pp. 357–378, 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40080.