Open problems in CEM

2013-09-09
This work provides an overview of a parallel, high-order, error-controllable framework for solving large-scale scattering problems in electromagnetics, as well as open problems pertinent to such solutions. The method is based on the higherorder locally corrected Nystrom (LCN) discretization of the combined-field integral equation (CFIE), accelerated with the error-controlled Multi-Level Fast Multipole Algorithm (MLFMA). Mechanisms for controlling the accuracy of calculations are discussed, including geometric representation, stages of the locally corrected Nystrom method, and the MLFMA. Also presented are the key attributes of parallelization for the developed numerical framework. Numerical results validate the proposed numerical scheme by demonstrating higher-order error convergence for smooth scatterers. For the problem of scattering from a sphere, the developed numerical solution is shown to have the ability to produce a solution with a maximum relative error of the order 10-9. Open-ended problems, such as treatment of general scatterers with geometric singularities, construction of well-conditioned operators, and current challenges in development of fast iterative and direct algorithms, are also discussed.
IEEE Antennas and Propagation Magazine

Suggestions

Parallel linear solution of large structures on heterogeneous PC clusters
Kurç, Özgür (2006-12-01)
In this paper, a parallel solution framework for the linear static analysis of large structures on heterogeneous PC clusters is presented. The framework consists of two main steps; data preparation and parallel solution. The parallel solution is performed by a substructure based method with direct solvers. The aim of the data preparation step is to create the best possible substructures so that the condensation times of substructures are balanced. Examples which illustrate the applicability and the efficien...
Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations
Ergül, Özgür Salih (2007-04-01)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving closed conductors. We consider the solutions of relatively large scattering problems by employing the multilevel fast multipole algorithm. Accuracy problems of MFIE and CFIE arising from their implementations with the conventional Rao-Wilton-Glisson (RWG) basis functions can...
Fast-Multipole-Method Solutions of New Potential Integral Equations
Gür, Uğur Meriç; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-09-27)
A recently introduced potential integral equations for stable analysis of low-frequency problems involving dense discretizations with respect to wavelength are solved by using the fast multipole method (FMM). Two different implementations of FMM based on multipoles and an approximate diagonalization employing scaled plane waves are developed and used for rigorous solutions of low-frequency problems. Numerical results on canonical problems demonstrate excellent stability and solution capabilities of both imp...
Implementation of k-epsilon turbulence models in a two dimensional parallel navier-stokes solver on hybrid grids
Kalkan, Onur Ozan; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2014)
In this thesis, the popular k-ε turbulence model is implemented on a parallel, 2-dimensional, explicit, density-based, finite volume based Navier-Stokes solver works on hybrid grids, HYP2D. Among the other versions available in the open literature, standard version of the k-ε turbulence mode is studied. Launder-Spalding and Chieng-Launder wall functions are adapted to the turbulence model in order to investigate the effects of the strong gradients in the vicinity of the wall on the turbulence. In order to i...
NUMERICAL STABILITY OF RBF APPROXIMATION FOR UNSTEADY MHD FLOW EQUATIONS
Gurbuz, Merve; Tezer, Münevver (2019-01-01)
In this study, the radial basis function (RBF) approximation is applied for solving the unsteady fluid flow and magnetohydrodynamic (MHD) convection flow problems with the use of explicit Euler time discretization and relaxation parameters to accelerate the convergence. The stability analysis is also carried out in terms of the spectral radius of related RBF discretized coefficient matrices. The optimal choices of the time increment, relaxation parameters and physical problem parameters are found for achiev...
Citation Formats
Ö. S. Ergül, “Open problems in CEM,” IEEE Antennas and Propagation Magazine, pp. 294–294, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40133.