Fast-Multipole-Method Solutions of New Potential Integral Equations

2017-09-27
Gür, Uğur Meriç
Karaosmanoglu, Bariscan
Ergül, Özgür Salih
A recently introduced potential integral equations for stable analysis of low-frequency problems involving dense discretizations with respect to wavelength are solved by using the fast multipole method (FMM). Two different implementations of FMM based on multipoles and an approximate diagonalization employing scaled plane waves are developed and used for rigorous solutions of low-frequency problems. Numerical results on canonical problems demonstrate excellent stability and solution capabilities of both implementations.

Suggestions

Efficient preconditioning strategies for the multilevel fast multipole algorithm
Gurel, Levent; Malas, Tahir; Ergül, Özgür Salih (2007-03-30)
For the iterative solutions of the integral equation methods employing the multilevel fast multipole algorithm (MLFMA), effective preconditioning techniques should be developed for robustness and efficiency. Preconditioning techniques for such problems can be broadly classified as fixed preconditioners that are generated from the sparse near-field matrix and variable ones that can make use of MLFMA with the help of the flexible solvers. Among fixed preconditioners, we show that an incomplete LU precondition...
Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations
Ergül, Özgür Salih (2007-04-01)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving closed conductors. We consider the solutions of relatively large scattering problems by employing the multilevel fast multipole algorithm. Accuracy problems of MFIE and CFIE arising from their implementations with the conventional Rao-Wilton-Glisson (RWG) basis functions can...
On the accuracy of MFIE and CFIE in the solution of large electromagnetic scattering problems
Ergül, Özgür Salih (null; 2006-11-10)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving large scatterers. MFIE and CFIE with the conventional Rao-Wilton-Glisson (RWG) basis functions are significantly inaccurate even for large and smooth geometries, such as a sphere, compared to the solutions by the electric-field integral equation (EFIE). By using the LL funct...
Accuracy of Sources and Near-Zone Fields When Using Potential Integral Equations at Low Frequencies
Gur, Ugur Meric; Ergül, Özgür Salih (2017-01-01)
We consider method-of-moments solutions of the recently developed potential integral equations (PIEs) for low-frequency electromagnetic problems involving perfectly conducting objects. The electric current density, electric charge density, and near-zone fields calculated by using PIEs are investigated at low frequencies, in contrast to those obtained via the conventional electric-field integral equation (EFIE). We show that: 1) the charge density can accurately be found by using EFIE despite the very poor a...
Broadband Analysis of Multiscale Electromagnetic Problems: Novel Incomplete-Leaf MLFMA for Potential Integral Equations
Khalichi, Bahram; Ergül, Özgür Salih; Takrimi, Manouchehr; Erturk, Vakur B. (2021-12-01)
Recently introduced incomplete tree structures for the magnetic-field integral equation are modified and used in conjunction with the mixed-form multilevel fast multipole algorithm (MLFMA) to employ a novel broadband incomplete-leaf MLFMA (IL-MLFMA) to the solution of potential integral equations (PIEs) for scattering/radiation from multiscale open and closed surfaces. This population-based algorithm deploys a nonuniform clustering that enables to use deep levels safely and, when necessary, without compromi...
Citation Formats
U. M. Gür, B. Karaosmanoglu, and Ö. S. Ergül, “Fast-Multipole-Method Solutions of New Potential Integral Equations,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54193.