Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fast-Multipole-Method Solutions of New Potential Integral Equations
Date
2017-09-27
Author
Gür, Uğur Meriç
Karaosmanoglu, Bariscan
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
35
views
0
downloads
Cite This
A recently introduced potential integral equations for stable analysis of low-frequency problems involving dense discretizations with respect to wavelength are solved by using the fast multipole method (FMM). Two different implementations of FMM based on multipoles and an approximate diagonalization employing scaled plane waves are developed and used for rigorous solutions of low-frequency problems. Numerical results on canonical problems demonstrate excellent stability and solution capabilities of both implementations.
Subject Keywords
Scattering
,
Potential integral equations
,
Low-frequency problems
,
Fast multipole method
URI
https://hdl.handle.net/11511/54193
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations
Ergül, Özgür Salih (2007-04-01)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving closed conductors. We consider the solutions of relatively large scattering problems by employing the multilevel fast multipole algorithm. Accuracy problems of MFIE and CFIE arising from their implementations with the conventional Rao-Wilton-Glisson (RWG) basis functions can...
On the accuracy of MFIE and CFIE in the solution of large electromagnetic scattering problems
Ergül, Özgür Salih (null; 2006-11-10)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving large scatterers. MFIE and CFIE with the conventional Rao-Wilton-Glisson (RWG) basis functions are significantly inaccurate even for large and smooth geometries, such as a sphere, compared to the solutions by the electric-field integral equation (EFIE). By using the LL funct...
Accuracy of Sources and Near-Zone Fields When Using Potential Integral Equations at Low Frequencies
Gur, Ugur Meric; Ergül, Özgür Salih (2017-01-01)
We consider method-of-moments solutions of the recently developed potential integral equations (PIEs) for low-frequency electromagnetic problems involving perfectly conducting objects. The electric current density, electric charge density, and near-zone fields calculated by using PIEs are investigated at low frequencies, in contrast to those obtained via the conventional electric-field integral equation (EFIE). We show that: 1) the charge density can accurately be found by using EFIE despite the very poor a...
Accurate Solutions of Extremely Large Integral-Equation Problems in Computational Electromagnetics
Ergül, Özgür Salih (2013-02-01)
Accurate simulations of real-life electromagnetics problems with integral equations require the solution of dense matrix equations involving millions of unknowns. Solutions of these extremely large problems cannot be achieved easily, even when using the most powerful computers with state-of-the-art technology. However, with the multilevel fast multipole algorithm (MLFMA) and parallel MLFMA, we have been able to obtain full-wave solutions of scattering problems discretized with hundreds of millions of unknow...
Broadband Analysis of Multiscale Electromagnetic Problems: Novel Incomplete-Leaf MLFMA for Potential Integral Equations
Khalichi, Bahram; Ergül, Özgür Salih; Takrimi, Manouchehr; Erturk, Vakur B. (2021-12-01)
Recently introduced incomplete tree structures for the magnetic-field integral equation are modified and used in conjunction with the mixed-form multilevel fast multipole algorithm (MLFMA) to employ a novel broadband incomplete-leaf MLFMA (IL-MLFMA) to the solution of potential integral equations (PIEs) for scattering/radiation from multiscale open and closed surfaces. This population-based algorithm deploys a nonuniform clustering that enables to use deep levels safely and, when necessary, without compromi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. M. Gür, B. Karaosmanoglu, and Ö. S. Ergül, “Fast-Multipole-Method Solutions of New Potential Integral Equations,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54193.