Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimal initialization of manipulation dynamics by vorticity model of robot hand preshaping. Part II: Analyses of grasp initialization and its vorticity based optimization
Date
2000-04-01
Author
Erkmen, Aydan Müşerref
Tekkaya, E
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
287
views
0
downloads
Cite This
Our work focuses on developing methods of determining the optimal preshape of a robot hand closing onto an object in order to achieve at contact a certain stability and manipulability degree based on kinematic considerations. This purposive closing of a preshaped hand should then be kinematically modelled in such a way that impact force patterns on the object can naturally be deduced from the model and be optimized such that upon contacting the object the desired optimum initial conditions of manipulation are generated. We define in Part I of this two part article the stability and manipulability criteria of a robot hand preshape based on vertex theory dealing with the analysis of vorticities in the robot hand workspace. The grasp initialization patterns are generated as a forward stress problem using the finite element method. There, in Part II of the article they are further related to the concept of manipulability so that a robot hand grasping problem is formulated that maximizes manipulability and stability upon landing of fingertips onto the object. This problem is solved in Part II by finding the proper contact locations of fingertips for optimally impacting the object and properly initializing the manipulation phase.
Subject Keywords
Control and Systems Engineering
URI
https://hdl.handle.net/11511/40145
Journal
JOURNAL OF ROBOTIC SYSTEMS
DOI
https://doi.org/10.1002/(sici)1097-4563(200004)17:4<213::aid-rob4>3.0.co;2-v
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Optimal initialization of manipulation dynamics by vorticity model of robot hand preshaping. Part I: Vorticity model
Erkmen, Aydan Müşerref; Tekkaya, E (Wiley, 2000-04-01)
The manipulation phase of a multifingered robot hand is initialized, upon contact, by the impact force patterns imparted to the object at contact points, in the final state of a preshaped hand closure. The object then inherits from contacts different helix motion tendencies (translation, rotation) as the initial conditions of manipulation. These motion tendencies are caused by the forces/torques imparted to the object upon impact, and are generated by changes of momenta of the closing hand preshape at the c...
Performance evaluation of piezoelectric sensor/actuator on active vibration control of a smart beam
Şahin, Melin (SAGE Publications, 2011-01-01)
In this paper the performance of a piezoelectric sensor/actuator pair and self-sensing piezoelectric actuator on the investigation of vibration characteristics and active vibration control of a smart beam are presented. The performance of piezoelectric patches on actuation and sensing is evaluated by investigating the vibration characteristics of the smart beam via various excitation mechanisms and transduction systems. For active vibration suppression of the smart beam, robust controllers are designed and ...
GENERATING EFFECTIVE INITIATION SETS FOR SUBGOAL-DRIVEN OPTIONS
DEMİR, ALPER; Cilden, Erkin; Polat, Faruk (World Scientific Pub Co Pte Lt, 2019-03-01)
Options framework is one of the prominent models serving as a basis to improve learning speed by means of temporal abstractions. An option is mainly composed of three elements: initiation set, option's local policy and termination condition. Although various attempts exist that focus on how to derive high-quality termination conditions for a given problem, the impact of initiation set generation is relatively unexplored. In this work, we propose an effective goal-oriented heuristic method to derive useful i...
design and implementation of a two-axes linear positioning system for rapid prototyping applications
Yazıcıoğlu, Faruk; Söylemez, Erses; Department of Mechanical Engineering (2007)
In this study, a two axes linear positioning system for testing and applying different rapid prototyping techniques was designed and manufactured. A cable/ pulley mechanism is utilized in the system for transmitting motion from motors into linear motion. Use of a cable/ pulley mechanism overcomes the problems resulting from the utilization of conventional drive systems like ball screws and decreases the overall cost of the system. The carriage elements of both axes were designed and manufactured by using in...
On-line controller tuning by matlab using real system responses
Pektaş, Seda; Balkan, Raif Tuna; Department of Mechanical Engineering (2004)
This thesis attempts to tune any controller without the mathematical model knowledge of the system it is controlling. For that purpose, the optimization algorithm of MATLAB® 6.5 / Nonlinear Control Design Blockset (NCD) is adapted for real-time executions and combined with a hardware-in-the-loop simulation provided by MATLAB® 6.5 / Real-Time Windows Target (RTWT). A noise-included model of a DC motor position control system is obtained in MATLAB® / SIMULINK first and simulated to test the modified algorithm...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. M. Erkmen and E. Tekkaya, “Optimal initialization of manipulation dynamics by vorticity model of robot hand preshaping. Part II: Analyses of grasp initialization and its vorticity based optimization,”
JOURNAL OF ROBOTIC SYSTEMS
, pp. 213–231, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40145.