Optimal initialization of manipulation dynamics by vorticity model of robot hand preshaping. Part I: Vorticity model

2000-04-01
The manipulation phase of a multifingered robot hand is initialized, upon contact, by the impact force patterns imparted to the object at contact points, in the final state of a preshaped hand closure. The object then inherits from contacts different helix motion tendencies (translation, rotation) as the initial conditions of manipulation. These motion tendencies are caused by the forces/torques imparted to the object upon impact, and are generated by changes of momenta of the closing hand preshape at the contact locations. The generalized impact force patterns vary for different hand preshapes, since each preshape closes upon an object with different momenta types. Consequently, the purposive closing of a preshaped hand should be kinematically modeled in such a way that impact force patterns can be naturally deduced from the model and compared to the desired ones so that this preshaped dosing can be optimized according to the impact force pattern it applies to the object at contact. This would generate the optimal initial conditions of manipulation. Our work in this two part article focuses on developing methods of determining, optimally, the preshape of a robot hand closing onto an object, in order to achieve at contact a certain stability and manipulability degree based on kinematic considerations. Toward this objective, in Part I of the manuscript we define the stability and manipulability criteria of a robot hand preshape based on vortex theory, dealing with the analysis of vorticities in the robot hand workspace. (C) 2000 John Wiley & Sons, Inc.

Suggestions

Optimal initialization of manipulation dynamics by vorticity model of robot hand preshaping. Part II: Analyses of grasp initialization and its vorticity based optimization
Erkmen, Aydan Müşerref; Tekkaya, E (Wiley, 2000-04-01)
Our work focuses on developing methods of determining the optimal preshape of a robot hand closing onto an object in order to achieve at contact a certain stability and manipulability degree based on kinematic considerations. This purposive closing of a preshaped hand should then be kinematically modelled in such a way that impact force patterns on the object can naturally be deduced from the model and be optimized such that upon contacting the object the desired optimum initial conditions of manipulation a...
Performance evaluation of piezoelectric sensor/actuator on active vibration control of a smart beam
Şahin, Melin (SAGE Publications, 2011-01-01)
In this paper the performance of a piezoelectric sensor/actuator pair and self-sensing piezoelectric actuator on the investigation of vibration characteristics and active vibration control of a smart beam are presented. The performance of piezoelectric patches on actuation and sensing is evaluated by investigating the vibration characteristics of the smart beam via various excitation mechanisms and transduction systems. For active vibration suppression of the smart beam, robust controllers are designed and ...
Severity Estimation of Interturn Short Circuit Fault for PMSM
Qi, Yuan; Bostancı, Emine; Zafarani, Mohsen; Akin, Bilal (Institute of Electrical and Electronics Engineers (IEEE), 2019-09-01)
This paper presents a novel method to estimate the number of shorted turns in a permanent magnet synchronous machine (PMSM) following the detection of interturn short-circuit (ITSC) fault and its location. In this proposed method, PMSM is excited through a low sinusoidal voltage at standstill condition to obtain the winding resistance and synchronous inductance by current response. It is shown that the ITSC fault introduces variation in the current response, which can be used to calculate the number of shor...
Momentum Transfer from Preshape to Grasping
Ozyer, Baris; Erkmen, İsmet; Erkmen, Aydan Müşerref (Springer Science and Business Media LLC, 2014-08-01)
A fully immersed object, suspended in water can be rotated from distance by a preshaped robot hand approaching and closing upon the object prior to contacting it. Momentum transfer from robot fingers closing into a grasp, to the fluid medium particles, and from these particles to the object surface generates the motion tendencies of that object in terms of rotational and translational displacements. In this paper, we propose the novel concept of a controller that determines either: 1) given initial position...
Phase-sensitive detection of motor fault signatures in the presence of noise
Akin, Bilal; Orguner, Umut; Toliyat, Hamid A.; Rayner, Mark (Institute of Electrical and Electronics Engineers (IEEE), 2008-06-01)
In this paper, a digital signal processor-based phase-sensitive motor fault signature detection technique is presented. The implemented method has a powerful line current noise suppression capability while detecting the fault signatures. Because the line current of inverter-driven motors involve low-order harmonies, high-frequency switching disturbances, and the noise generated by harsh industrial environment, the real-time fault analyses yield erroneous or fluctuating fault signatures. This situation becom...
Citation Formats
A. M. Erkmen and E. Tekkaya, “Optimal initialization of manipulation dynamics by vorticity model of robot hand preshaping. Part I: Vorticity model,” JOURNAL OF ROBOTIC SYSTEMS, pp. 199–212, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40853.