Gain and transient photoresponse of quantum well infrared photodetectors: A detailed ensemble Monte Carlo study

Cellek, O.O.
Memis, S.
Bostanci, U.
Ozer, S.
Beşikci, Cengiz
We investigate different gain characteristics observed on quantum well infrared photodetectors (QWIPs) fabricated with various material systems, and the effects of barrier material properties on the device characteristics through detailed ensemble Monte Carlo simulations. When the energy spacing between the central and satellite valleys is increased, the improvement in the excited electron lifetime is found to be much stronger than that in the average electron velocity in the device. According to our results, relatively high gain observed in InP/In0.53Ga0.47As QWIPs under large bias is not due to the higher mobility in InP as suggested earlier; it can mainly be attributed to higher excited electron lifetime as a result of relatively large Γ–L energy spacing. We discuss the details of the fast part of the Al0.3Ga0.7As/GaAs QWIP transient photoresponse, which exhibits three regions with different decay characteristics under a short pulse of radiation. The duration of the final region, during which the electrons excited near the emitter are extracted from the collector, is observed to be considerably long due to the dispersion of the photoelectrons. The photoresponse time rapidly decreases with increasing bias under low bias, and nearly saturates at ∼10 ps under large bias being ∼40% larger than the average transit time estimated by dividing the device length to the average steady-state electron velocity in device. We also investigate the effects of the interface reflections on the photoresponse time.
Physica E: Low-Dimensional Systems and Nanostructures


Nonlinear optical properties of a Woods-Saxon quantum dot under an electric field
AYTEKİN, ÖZLEM; Turgut, Sadi; Unal, V. Ustoglu; Aksahin, E.; Tomak, Mehmet (Elsevier BV, 2013-12-01)
A theoretical study of the effect of the confining potential on the nonlinear optical properties of two dimensional quantum dots is performed. A three-parameter Woods-Saxon potential is used within the density matrix formalism. The control of confinement by three parameters and an applied electric field gives one quite an advantage in studying their effects on the nonlinear properties. The coefficients investigated include the optical rectification, second and third-harmonic generation and the change in the...
Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations
KURBAN, MUSTAFA; Erkoç, Şakir (Elsevier BV, 2017-04-01)
Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT.) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that,...
Quantum chemical treatment of Li/Li+ doped defected carbon nanocapsules
Pekoez, Rengin; Erkoç, Şakir (Elsevier BV, 2008-06-01)
Structural and electronic properties of and () doped mono-vacancy defected carbon nanocapsule (CNC) systems have been investigated theoretically by performing semi-empirical self-consistent-field (SCF) molecular orbital (MO) and density functional theory (DFT) methods. Semi-empirical SCF MO method at PM3 level has been considered to optimize fully the geometry of the CNCs in their ground states. The total energies of these structures were calculated using B3LYP exchange-correlation functional in DFT metho...
Theoretical investigation of intersubband nonlinear optical rectification in AlxlGa1-xlAs/GaAs/AlxrGa1-xrAs asymmetric rectangular quantum wells
Karabulut, Ibrahim; Atav, Uelfet; Safak, Haluk; Tomak, Mehmet (Wiley, 2007-09-01)
In this study, a theoretical investigation of intersubband nonlinear optical rectification in Alx1Ga1-x1As/ GaAs/AlxrGa1-xrAs asymmetric rectangular quantum wells is presented. The electronic states in the asymmetric rectangular quantum well are described within the framework of the envelope function approach including the effects of band nonparabolicity and the effective mass mismatch. The nonlinear optical rectification is calculated using the density matrix formalism. It is found that the nonlinear optic...
Electronic structure of a many-electron spherical quantum dot with an impurity
Sahin, M; Tomak, Mehmet (American Physical Society (APS), 2005-09-01)
We investigate the electronic structure of a many-electron spherical quantum dot with and without hydrogenic impurity. The number of electrons is taken as N=18. The density functional theory is used within local density approximation. Total energy, chemical potential, addition energy spectra, and the shell structure are determined and the results obtained are compared for cases with and without impurity. It is observed that the capacitive energy with the impurity increases in the 1s shell with respect to th...
Citation Formats
O. O. Cellek, S. Memis, U. Bostanci, S. Ozer, and C. Beşikci, “Gain and transient photoresponse of quantum well infrared photodetectors: A detailed ensemble Monte Carlo study,” Physica E: Low-Dimensional Systems and Nanostructures, pp. 318–327, 2004, Accessed: 00, 2020. [Online]. Available: