Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
State estimator design for multicomponent batch distillation columns
Download
index.pdf
Date
2005-05-01
Author
Yildiz, U
Gurkan, UA
Ozgen, C
Leblebicioğlu, Mehmet Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
7
downloads
In the control of batch distillation columns, one of the problems is the difficulty in monitoring the compositions. This problem can be handled by estimating the compositions from readily available online temperature measurements using a state estimator. In this study, a state estimator that infers the product composition in a multicomponent batch distillation column (MBDC) from the temperature measurements is designed and tested using a batch column simulation. An extended Kalman filter (EKF) is designed as the state estimator and is implemented for performance investigation on the case column with eight trays separating the mixture of cyclo-hexane, n-heptane and toluene. EKF parameters of the diagonal terms of process noise covariance matrix and those of measurement model noise covariance matrix are tuned in the range where the estimator is stable and selected basing on the least IAE score. Although NC-1 temperature measurements is sufficient considering observability criteria, using NC measurements spread through out the column homogeneously improves the performance of EKF estimator. The designed EKF estimator is successfully used in the composition-feedback inferential control of MBDC operated under variable reflux-ratio policy with an acceptable deviation of 0.5-3% from the desired purity level of the products.
Subject Keywords
General Chemistry
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/40229
Journal
CHEMICAL ENGINEERING RESEARCH & DESIGN
DOI
https://doi.org/10.1205/cherd.03318
Collections
Department of Electrical and Electronics Engineering, Article