Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Self-sustained oscillatory behavior of NO+CH4+O-2 reaction over titania-supported Pd catalysts
Date
1997-10-01
Author
OZKAN, UMIT
KUMTHEKAR, MAHESH
Karakaş, Gürkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
175
views
0
downloads
Cite This
Self-sustained, regular oscillations were observed in NO + CH4 + O-2 reaction over Pd/TiO2 catalysts at specific temperatures and oxygen concentrations. The oscillatory behavior was investigated combining NO reduction and methane combustion reaction studies with additional catalyst characterization experiments performed under controlled atmospheres. The catalyst was prepared using a wet impregnation technique with Pd-acetate as the precursor for palladium. A fixed-bed, flow reactor system was used to perform the NO + CH4 + O-2 and CH4 + O-2 reaction experiments. Feed and product analyses were done on-line using gas chromatography-mass spectrometry, chemiluminescence, and wet chemistry techniques. Additional catalyst characterization was performed using thermal gravimetric analysis and high-temperature, controlled-atmosphere X-ray diffraction techniques. Detailed analysis of the oscillatory behavior has indicated that oscillations in the product and reactant profiles are coupled with temperature oscillations in the catalyst. When combined with controlled-atmosphere characterization experiments, these results, which can be reproduced in both NO + CH4 + O-2 and CH4 + O-2 systems, suggested that the oscillations are the result of periodic phase change of palladium on the surface. These cyclic phase transformations, in turn, are the result of temperature variations that are caused by the varying levels of exothermicity of the two major reactions, namely NO reduction and CH4 combustion, that are favored by the metallic and the oxidic sites, respectively. (C) 1997 Academic Press.
Subject Keywords
Physical and Theoretical Chemistry
,
Catalysis
URI
https://hdl.handle.net/11511/40267
Journal
JOURNAL OF CATALYSIS
DOI
https://doi.org/10.1006/jcat.1997.1793
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Inverse relation between the catalytic activity and catalyst concentration for the ruthenium(0) nanoparticles supported on xonotlite nanowire in hydrogen generation from the hydrolysis of sodium borohydride
Akbayrak, Serdar; Özkar, Saim (Elsevier BV, 2016-12-01)
Ruthenium(0) nanoparticles supported on xonotlite nanowire (Ru(0)/X-NW) were prepared by the ion exchange of Rua* ions with Ca2+ ions in the lattice of xonotlite nanowire followed by their reduction with sodium borohydride in aqueous solution at room temperature. Ru(0)/X-NW show high catalytic activity and long life time in hydrogen generation from the hydrolysis of sodium borohydride with a turnover frequency value up to 305 min(-1) and a total turnover number of 63,100 mol H-2/mol Ru in hydrogen generatio...
Structure sensitivity of selective CO oxidation over Pt/gamma-Al2O3
Atalik, B.; Üner, Deniz (Elsevier BV, 2006-07-25)
In this study, the effect of particle size on the reaction rate and selectivity of preferential oxidation of CO (PROX) reaction was investigated on 2 wt% Pt/-Al2O3 catalysts prepared by an incipient wetness technique. The particle size of the catalysts was modified by calcination temperature and duration. CO oxidation and preferential CO oxidation reaction were studied on these catalysts at lambda = 2 (P-O2/P-CO) = 1. The CO oxidation reaction activation energy decreased with increasing particle size, consi...
OPTIMIZATION OF THE VOLUMETRIC HYDROGEN CHEMISORPTION TECHNIQUE FOR DISPERSIONS OF RU/SIO2 CATALYSTS
Üner, Deniz; KING, TS (Elsevier BV, 1995-09-15)
Metal dispersions of silica-supported ruthenium catalysts determined by the standard volumetric chemisorption technique were found to be inaccurate due to irreversible spillover of hydrogen to the support. Direct evidence was obtained via in situ H-1 NMR for an irreversibly bound component of the hydrogen that migrated from the metal to the support on a time scale of tens of minutes or longer at room temperature. It was also shown in this work that hydrogen saturated the surface of the metal particles on a ...
ELECTRONIC ABSORPTION AND MAGNETIC CIRCULAR-DICHROISM SPECTRA FOR BINUCLEAR PT2(SO4)4X2N- AND PT2(HPO4)4X2N- IONS IN AQUEOUS-SOLUTION
GOKAGAC, G; ISCI, H; MASON, WR (American Chemical Society (ACS), 1992-05-27)
Electronic absorption and 7-T magnetic circular dichroism (MCD) spectra in the UV-visible region are reported for the binuclear diplatinum(III) ions: Pt2(SO4)4X2n-, n = 2, X = H2O, NH3; n = 4, X = Cl-, Br-, OH-. Pt2(HPO4)4X2n-, n = 2, X = H2O, Me2S; n = 4, X = Cl-, Br-. Both the absorption spectra and the MCD spectra for complexes with the same axial ligand X are similar for oxo-bridging SO42- or HPO42-. However, the MCD spectra show marked differences depending upon the nature of the X ligand. The mos...
Exceptionally thermally stable, hydrocarbon soluble Ziegler-type Ir(0)(n) nanoparticle catalysts made from [Ir(1,5-COD)(mu-O2C8H15)](2) plus AlEt3: Tests of key hypotheses for their unusual stabilization
Hamdemir, Isil K.; Özkar, Saim; Finke, Richard G. (Elsevier BV, 2013-11-01)
In recent work we showed that Ziegler-type nanoparticles made from [Ir(1,5-COD)(mu-O2C8H15)](2) plus AlEt3 are an unusually thermally stable (>= 30 min at 200 degrees C), hydrocarbon-solvent soluble, high catalytic activity nanoparticle catalyst (I.K. Hamdemir, S. Ozkar, K.-H. Yih, J.E. Mondloch, R.G. Finke, ACS Catal. 2 (2012) 632-641). As such, they are analogous to-and currently the cleanest and best characterized model system for-Ziegler-type nanoparticles made from Co or Ni precatalysts plus AlEt3 whic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. OZKAN, M. KUMTHEKAR, and G. Karakaş, “Self-sustained oscillatory behavior of NO+CH4+O-2 reaction over titania-supported Pd catalysts,”
JOURNAL OF CATALYSIS
, pp. 67–76, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40267.