Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Exceptionally thermally stable, hydrocarbon soluble Ziegler-type Ir(0)(n) nanoparticle catalysts made from [Ir(1,5-COD)(mu-O2C8H15)](2) plus AlEt3: Tests of key hypotheses for their unusual stabilization
Date
2013-11-01
Author
Hamdemir, Isil K.
Özkar, Saim
Finke, Richard G.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
185
views
0
downloads
Cite This
In recent work we showed that Ziegler-type nanoparticles made from [Ir(1,5-COD)(mu-O2C8H15)](2) plus AlEt3 are an unusually thermally stable (>= 30 min at 200 degrees C), hydrocarbon-solvent soluble, high catalytic activity nanoparticle catalyst (I.K. Hamdemir, S. Ozkar, K.-H. Yih, J.E. Mondloch, R.G. Finke, ACS Catal. 2 (2012) 632-641). As such, they are analogous to-and currently the cleanest and best characterized model system for-Ziegler-type nanoparticles made from Co or Ni precatalysts plus AlEt3 which are used industrially to hydrogenate similar to 1.7 x 10(5) metric tons of styrenic block copolymers per year (for a review of the area, see W.M. Alley, I.K. Hamdemir, K.A. Johnson, R.G. Finke, J. Mol. Catal.: A Chem. 315 (2010) 1-27). The key question addressed in the present paper is "What is the nature of the AlEt3-derived stabilizer species?" for the unusually stable and active Ziegler-nanoparticles formed from [Ir(1,5-COD)(mu-O2C8H15)](2) plus AlEt3. Specifically tested herein are four primary hypotheses for the AlEt3-derived stabilizer(s) in the Ir(0)(n) Ziegler-nanoparticle system: (i) that the key stabilizer is neutral (i.e., uncharged) aluminum alkyl carboxylates following precedent from the work of Shmidt and Bonnemann; (ii) that the key stabilizer is anionic [AlEt3(O2C8H15)](-); (iii) that a key stabilizer is the AlEt3 (or its derivatives) reacting with the Ir(0)(n) nanoparticle surface; or (iv) that an important AlEt3-derived stabilizer is Al-O-Al containing alkylalumoxanes formed from any water present. The results obtained rule out (ii), but provide strong evidence for (iii), as well as evidence consistent with (i) and (iv), as stabilizers in Ziegler-nanoparticles. A pictorial scheme (Scheme 2) is provided as a working hypothesis for the stabilization mode(s) of Ziegler-nanoparticles and as a way to focus and expedite the needed additional composition and structural studies of Ziegler-nanoparticle stabilizers.
Subject Keywords
Physical and Theoretical Chemistry
,
Process Chemistry and Technology
,
Catalysis
URI
https://hdl.handle.net/11511/40428
Journal
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL
DOI
https://doi.org/10.1016/j.molcata.2013.07.005
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Inverse relation between the catalytic activity and catalyst concentration for the ruthenium(0) nanoparticles supported on xonotlite nanowire in hydrogen generation from the hydrolysis of sodium borohydride
Akbayrak, Serdar; Özkar, Saim (Elsevier BV, 2016-12-01)
Ruthenium(0) nanoparticles supported on xonotlite nanowire (Ru(0)/X-NW) were prepared by the ion exchange of Rua* ions with Ca2+ ions in the lattice of xonotlite nanowire followed by their reduction with sodium borohydride in aqueous solution at room temperature. Ru(0)/X-NW show high catalytic activity and long life time in hydrogen generation from the hydrolysis of sodium borohydride with a turnover frequency value up to 305 min(-1) and a total turnover number of 63,100 mol H-2/mol Ru in hydrogen generatio...
Novel neutral phosphinite bridged dinuclear ruthenium(II) arene complexes and their catalytic use in transfer hydrogenation of aromatic ketones: X-ray structure of a new Schiff base, N3,N3 '-di-2-hydroxybenzylidene-[2,2 ']bipyridinyl-3,3 '-diamine
AYDEMİR, MURAT; DURAP, FEYYAZ; BAYSAL, AKIN; MERİÇ, NERMİN; Buldag, Ayseguel; Guemguem, Bahattin; Özkar, Saim; Yildirim, Leyla Tatar (Elsevier BV, 2010-07-01)
A novel Schiff base N3,N3'-di-2-hydroxybenzylidene-[2,2']bipyridinyl-3,3'-diamine, 1 was synthesized from condensation of salicylaldehyde with 3,3'-diamino-2,2'-bipyridine. Reaction of 1 with two equivalents of PPh(2)Cl in the presence of Et(3)N proceeds in toluene to give N3,N3'-di-2-(diphenylphosphino)benzylidene-[2,2']bipyridinyl-3,3'-diamine, 2 in quantitative yield. Ruthenium(II) dimers [Ru(eta(6)-arene)(mu-Cl)]Cl](2) readily react with phosphinite ligand [(Ph(2)PO)(2)-C(24)H(16)N(4)], 2 in toluene at ...
Self-sustained oscillatory behavior of NO+CH4+O-2 reaction over titania-supported Pd catalysts
OZKAN, UMIT; KUMTHEKAR, MAHESH; Karakaş, Gürkan (Elsevier BV, 1997-10-01)
Self-sustained, regular oscillations were observed in NO + CH4 + O-2 reaction over Pd/TiO2 catalysts at specific temperatures and oxygen concentrations. The oscillatory behavior was investigated combining NO reduction and methane combustion reaction studies with additional catalyst characterization experiments performed under controlled atmospheres. The catalyst was prepared using a wet impregnation technique with Pd-acetate as the precursor for palladium. A fixed-bed, flow reactor system was used to perfor...
Nanoceria supported palladium(0) nanoparticles: Superb catalyst in dehydrogenation of formic acid at room temperature
Akbayrak, Serdar; TONBUL, YALÇIN; Özkar, Saim (Elsevier BV, 2017-06-05)
Highly efficient dehydrogenation of formic acid (FA) at room temperature was achieved using palladium(0) nanoparticles supported on nanoceria (Pd-0/CeO2) as catalysts. Pd-0/CeO2 was prepared by impregnation of palladium(II) ions on the surface of ceria followed by their reduction with sodium borohydride in aqueous solution at room temperature. Pd((0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by a combination of advanced analytical techniques. The catalytic activity of ...
Palladium(0) nanoparticles supported on polydopamine coated CoFe2O4 as highly active, magnetically isolable and reusable catalyst for hydrogen generation from the hydrolysis of ammonia borane
Manna, Joydev; Akbayrak, Serdar; Özkar, Saim (Elsevier BV, 2017-07-05)
Palladium(0) nanoparticles supported on cobalt ferrite (Pd degrees/CoFe2O4) are found to be highly active catalyst, providing an unprecedented catalytic activity with a turnover frequency of 290 min(-1) in hydrogen generation from the hydrolysis of ammonia borane at room temperature. However, the initial catalytic activity of Pd degrees/CoFe2O4 catalyst is not preserved after the reuse of the catalyst in hydrolytic dehydrogenation of ammonia borane. The stability of the catalyst is improved by using the pol...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. K. Hamdemir, S. Özkar, and R. G. Finke, “Exceptionally thermally stable, hydrocarbon soluble Ziegler-type Ir(0)(n) nanoparticle catalysts made from [Ir(1,5-COD)(mu-O2C8H15)](2) plus AlEt3: Tests of key hypotheses for their unusual stabilization,”
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL
, pp. 333–343, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40428.