Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Obtaining soil-water characteristic curves by numerical modeling of drainage in particulate media
Date
2016-04-01
Author
Sattari, A. Shoarian
Toker, Nabi Kartal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
227
views
0
downloads
Cite This
Soil-water characteristic curve (SWCC) is widely used for obtaining mechanical and hydraulic properties of unsaturated soils, such as shear strength, deformation, permeability, and flow. An innovative approach, where a meso-scale medium is generated based on particle size distribution and void ratio of non-plastic soils, for estimating the drying SWCC is developed. With application of the finite difference and Newton-Raphson (Jacobian) approximations, the air-entry pressures of pore bodies in inter-particle medium (micro-scale) are determined and implemented in drainage simulation of the medium. The volumes of drained pore bodies and subsequently developed liquid bridges after each suction iteration are calculated and plotted. Eventually, homogeneity of the developed packing algorithm, parametric study, comparison of the simulated drying SWCC to experimental and estimation results as well as computational performance of the developed MATALB code is presented and discussed. It is shown that, the proposed method results in much superior approximation of SWCC in comparison to the two major estimation methods (Arya and Paris, 1981; Fredlund and Wilson, 1997) and due to its accuracy and time efficiency, the algorithm can even be a viable option for replacing the tedious experimental methods.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
Computer Science Applications
URI
https://hdl.handle.net/11511/40280
Journal
COMPUTERS AND GEOTECHNICS
DOI
https://doi.org/10.1016/j.compgeo.2016.01.006
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Experimental and modelling study on nonlinear time-dependent behaviour of thin spray-on liner
Güner, Doğukan; Öztürk, Hasan (Elsevier BV, 2019-02-01)
Thin spray-on liners (TSLs) are fast-setting multi component polymeric materials applied on rock or coal surface with a thickness of 2-5 mm that have fairly high tensile strength, adhesion, and elongation capabilities. Compared to conventional surface support elements, TSLs with polymer content exhibit different material responses over time. As a matter of fact, the creep behaviour of TSLs under a constant load has a significance for the evaluation of the long term performances of TSLs. This paper investiga...
Residual Shear Strength Measured by Laboratory Tests and Mobilized in Landslides
Mesri, Gholamreza; Huvaj Sarıhan, Nejan (American Society of Civil Engineers (ASCE), 2012-05-01)
Drained residual shear strength measured by multiple reversal direct shear or ring shear tests has been successfully used for over four decades for stability analyses of reactivated landslides in stiff clays and clay shales; A body of literature has accumulated in recent decades, claiming that "healing" or "strength regain" is realized in time on preexisting slip surfaces already at residual condition. In other words, the shear stress required to reactivate a landslide is claimed to be larger than the drain...
Sensitivity Analysis of Major Drilling Parameters on Cuttings Transport during Drilling Highly-inclined Wells
Ozbayoglu, E. M.; Miska, S. Z.; Takach, N.; Reed, T. (Informa UK Limited, 2009-01-01)
In this study, a layered cuttings transport model is developed for high-angle and horizontal wells, which can be used for incompressible non-Newtonian fluids as well as compressible non-Newtonian fluids (i.e., foams). The effects of major drilling parameters, such as flow rate, rate of penetration, fluid density, viscosity, gas ratio, cuttings size, cuttings density, wellbore inclination and eccentricity of the drillsting on cuttings transport efficiency are analyzed. The major findings from this study are,...
Creep behaviour investigation of a thin spray-on liner
Güner, Doğukan; Öztürk, Hasan (Elsevier BV, 2018-08-01)
Thin spray-on liner (TSL) is a fast-setting multi component polymeric material applied on a rock surface with a thickness of 2-5 mm. TSLs are primarily used as an areal support element in a support system that also incorporates rock bolts. Different laboratory and field tests were performed to understand the support performance of the TSL for underground design. The research described in this paper presents laboratory studies of the tensile creep behaviour of a cement based TSL for the first time in the lit...
CPT-Based Probabilistic Soil Characterization and Classification
Çetin, Kemal Önder (American Society of Civil Engineers (ASCE), 2009-01-01)
Due to lack of soil sampling during conventional cone penetration testing, it is necessary to characterize and classify soils based on tip and sleeve friction values as well as pore pressure induced during and after penetration. Currently available semiempirical methods exhibit a significant variability in the estimation of soil type. Within the confines of this paper it is attempted to present a new probabilistic cone penetration test (CPT)-based soil characterization and classification methodology, which ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. S. Sattari and N. K. Toker, “Obtaining soil-water characteristic curves by numerical modeling of drainage in particulate media,”
COMPUTERS AND GEOTECHNICS
, pp. 196–210, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40280.