Effective bandwidth approach for the spectral splitting of solar spectrum using diffractive optical elements

Yolalmaz, Alim
Yüce, Emre
Spectral splitting of the sunlight using diffractive optical elements (DOEs) is an effective method to increase the efficiency of solar panels. Here, we design phase-only DOEs by using an iterative optimization algorithm to spectrally split and simultaneously concentrate solar spectrum. In our calculations, we take material dispersion into account as well as the normalized blackbody spectrum of the sunlight. The algorithm consists of the local search optimization and is strengthened with an outperforming logic operation called MEAN optimization. Using the MEAN optimization algorithm, we demonstrate spectral splitting of a dichromatic light source at 700 nm and 1100 nm with spectral splitting efficiencies of 92% and 94%, respectively. In this manuscript, we introduce an effective bandwidth approach, which reduces the computational time of DOEs from 89 days to 8 days, while preserving the spectral splitting efficiency. Using our effective bandwidth method, we manage to spectrally split light into two separate bands between 400 nm - 700 nm and 701 nm - 1100 nm, with splitting efficiencies of 56% and 63%, respectively. Our outperforming and effective bandwidth design approach can be applied to DOE designs in color holography, spectroscopy, and imaging applications. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement


High power microsecond fiber laser at 1.5 μm
Pavlova, Svitlana; Yagci, M. Emre; Eken, S. Koray; Tunckol, Ersan; Pavlov, Ihor (The Optical Society, 2020-06-08)
© 2020 Optical Society of America.In this work, we demonstrate a single frequency, high power fiber-laser system, operating at 1550 nm, generating controllable rectangular-shape μs pulses. In order to control the amplified spontaneous emission content, and overcome the undesirable pulse steepening during the amplification, a new method with two seed sources operating at 1550 nm and 1560 nm are used in this system. The output power is about 35 W in CW mode, and the peak power is around 32 W in the pulsed mod...
Improving the absorption of solar cells using antenna-inspired cavities
Karaosmanoğlu, Barışcan; Tuygar, Emre; Topçuoğlu, Ulaş; Ergül, Özgür Salih (Wiley, 2019-08-01)
We present new types of nanocavities to improve the absorption of solar cells for energy harvesting in wide frequency ranges of the optical spectrum. Using a full‐wave approach, as opposed to the commonly used ray‐based modeling of the light, antenna‐inspired cavities with horn shapes are proposed and introduced. The effectiveness of the designed cavities is demonstrated in comparison to the conventional textures involving inverted pyramids and nanocones. Highly accurate numerical results show that solar‐ce...
Compressive spectral imaging with diffractive lenses
Kar, Oguzhan Fatih; Öktem, Sevinç Figen (The Optical Society, 2019-09-15)
Compressive spectral imaging enables the reconstruction of an entire 3D spectral cube from a few multiplexed images. Here we develop a novel compressive spectral imaging technique using diffractive lenses. Our technique uses a coded aperture to spatially modulate the optical field from the scene and a diffractive lens such as a photon sieve for both dispersion and focusing. Measurement diversity is achieved by changing the focusing behavior of the diffractive lens. The 3D spectral cube is then reconstructed...
Efficient computation of 2D point-spread functions for diffractive lenses
Ayazgok, Suleyman; Öktem, Sevinç Figen (The Optical Society, 2020-01-10)
Diffractive lenses, such as Fresnel zone plates, photon sieves, and their modified versions, have been of significant recent interest in high-resolution imaging applications. As the advent of diffractive lens systems with different configurations expands, the fast and accurate simulation of these systems becomes crucial for both the design and image reconstruction tasks. Here we present a fast and accurate method for computing the 2D point-spread function (PSF) of an arbitrary diffractive lens. The method i...
High Conversion Efficiency InP/InGaAs Strained Quantum Well Infrared Photodetector Focal Plane Array With 9.7 mu m Cut-Off for High-Speed Thermal Imaging
Eker, Suleyman Umut; Arslan, Yetkin; Onuk, Ahmet Emre; Beşikci, Cengiz (Institute of Electrical and Electronics Engineers (IEEE), 2010-02-01)
InP/InGaAs material system is an alternative to AlGaAs/GaAs for long wavelength quantum well infrared photodetectors (QWIPs). We demonstrate a large format (640 x 512) QWIP focal plane array (FPA) constructed with the strained InP/InGaAs material system. The strain introduced to the structure through utilization of In0.48Ga0.52As (instead of In0.53Ga0.47As) as the quantum well material shifts the cut-off wavelength from similar to 8.5 to 9.7 mu m. The FPA fabricated with the 40-well epilayer structure yield...
Citation Formats
A. Yolalmaz and E. Yüce, “Effective bandwidth approach for the spectral splitting of solar spectrum using diffractive optical elements,” OPTICS EXPRESS, pp. 12911–12921, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40308.