Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Effective and Functional Surface Design for Biosensing Applications Based on a Novel Conducting Polymer and PMMA/Clay Nanocomposite
Date
2013-08-01
Author
Kesik, Melis
Kocer, Ozgecan
Kanik, Fulya Ekiz
Unlu, Naime Akbasoglu
Rende, Eda
Aslan-Gurel, Evren
Rossi, Rene M.
Udum, Yasemin Arslan
Toppare, Levent Kamil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Surface functionalization plays a crucial role in the design of biosensors. For this purpose, a novel functional monomer, 6-(4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2H-benzo[d][1,2,3]triazol-2-yl)hexan-1-amine (BEDOA-6), was designed and synthesized. Poly(BEDOA-6) was utilized as an immobilization matrix for glucose oxidase biosensor construction. Moreover, polymethylmethacrylate (PMMA) layered silicate nanocomposites were prepared by in situ suspension polymerization. Conducting polymer surface was modified with PMMA/clay nanocomposite material and a glucose biosensor was developed. In addition, XPS and SEM were utilized to characterize the surface properties. The biosensor shows a wide linear range between 2.8 mu M and 1.2mM to glucose with a low detection limit of 1.99 mu M. Finally, the biosensor was tested on serum samples containing actual human blood. The results were in well-agreement with a reference method.
Subject Keywords
Analytical Chemistry
,
Electrochemistry
URI
https://hdl.handle.net/11511/40337
Journal
ELECTROANALYSIS
DOI
https://doi.org/10.1002/elan.201300193
Collections
Department of Chemistry, Article