Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A triple hybrid micropower generator with simultaneous multi-mode energy harvesting
Date
2018-01-01
Author
ULUSAN, HASAN
CHAMANIAN, S.
PATHIRANA, W. P. M. R.
ZORLU, O.
MUHTAROGLU, A.
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
181
views
0
downloads
Cite This
This study presents a triple hybrid energy harvesting system that combines harvested power from thermoelectric (TE), vibration-based electromagnetic (EM) and piezoelectric (PZT) harvesters into a single DC supply. A power management circuit is designed and implemented in 180 nm standard CMOS technology based on the distinct requirements of each harvester, and is terminated with a Schottky diode to avoid reverse current flow. The system topology hence supports simultaneous power generation and delivery from low and high frequency vibrations as well as temperature differences in the environment. The ultra-low DC voltage harvested from TE generator is boosted with a cross-coupled charge-pump driven by an LC oscillator with fully-integrated center-tapped differential inductors. The EM harvester output was rectified with a self-powered and low drop-out AC/DC doubler circuit. The PZT interface electronics benefits from peak-to-peak cycle of the harvested voltage through a negative voltage converter followed by synchronous power extraction and DC-to-DC conversion through internal switches, and an external inductor. The hybrid system was tested with a wearable in-house EM energy harvester placed wrist of a jogger, a commercial low volume PZT harvester, and DC supply as the TE generator output. The system generates more than 1.2 V output for load resistances higher than 50 k Omega, which corresponds to 24 mu W to power wearable sensors. Simultaneous multi-mode operation achieves higher voltage and power compared to stand-alone harvesting circuits, and generates up to 110 mu W of output power. This is the first hybrid harvester circuit that simultaneously extracts energy from three independent sources, and delivers a single DC output.
Subject Keywords
Signal Processing
,
Electrical and Electronic Engineering
,
General Materials Science
,
Atomic and Molecular Physics, and Optics
,
Mechanics of Materials
,
Civil and Structural Engineering
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/40353
Journal
SMART MATERIALS AND STRUCTURES
DOI
https://doi.org/10.1088/1361-665x/aa8a09
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A Compact Energy Transducer for Power Generation From Respiration
Beyaz, Mustafa Ilker; Habibiabad, Sahar; Yildiz, Hamza; Goreke, Utku; Azgın, Kıvanç (Institute of Electrical and Electronics Engineers (IEEE), 2019-06-01)
This paper reports a compact magnetic transducer developed for generating electrical power from respiration. The device incorporates a side-drive turbine rotor with embedded permanent magnets and two stators, integrated into a poly(methyl methacrylate) (PMMA) package for actuation. The novelty and advantage of the design lies in almost full use of the available turbine volume together with two stators for both mechanical and electrical transduction, which leads to high rotational speeds and high voltage gen...
Using reactive artificial muscles to determine water exchange during reactions
Otero, T. F.; Martinez, J. G.; Zaifoglu, B. (IOP Publishing, 2013-10-01)
Artificial muscles based on films of conducting polymers translate film volume variations, driven by electrochemical reactions (Faradaic motors), into macroscopic movements with generation of mechanical energy. The reaction promotes exchange of counterions (anions here) and solvent molecules with the electrolyte. Attributing here both the film volume variation and the movement originated by these exchanges of ions and solvent, the described angles can be used to quantify the exchanged solvent. Different ang...
A Multi-source Micro Power Generator Employing Thermal and Vibration Energy Harvesting
Toreyin, Hakan; Topal, Emre; Külah, Haluk (2010-09-08)
This paper introduces a new cantilever type multi-source energy harvester generating electric power from both ambient heat and vibration. Harvesting energy from vibration was realized by electromagnetic conversion, whereas the energy generation from heat was supplied by making use of Seebeck effect of Cr-Al thermocouples implemented on the microcantilevers. The measured average Seebeck coefficient is 12 mu V/K per thermocouples. A total voltage of 3.3 mV was generated from the thermoelectric part and 13.4 m...
Improving the absorption of solar cells using antenna-inspired cavities
Karaosmanoğlu, Barışcan; Tuygar, Emre; Topçuoğlu, Ulaş; Ergül, Özgür Salih (Wiley, 2019-08-01)
We present new types of nanocavities to improve the absorption of solar cells for energy harvesting in wide frequency ranges of the optical spectrum. Using a full‐wave approach, as opposed to the commonly used ray‐based modeling of the light, antenna‐inspired cavities with horn shapes are proposed and introduced. The effectiveness of the designed cavities is demonstrated in comparison to the conventional textures involving inverted pyramids and nanocones. Highly accurate numerical results show that solar‐ce...
Power-Efficient Hybrid Energy Harvesting System for Harnessing Ambient Vibrations
Chamanian, Salar; Çiftci, Berkay; Ulusan, Hasan; Muhtaroglu, Ali; Külah, Haluk (Institute of Electrical and Electronics Engineers (IEEE), 2019-07-01)
This paper presents an efficient hybrid energy harvesting interface to synergistically scavenge power from electromagnetic (EM) and piezoelectric (PE) sources, and drive a single load. The EM harvester output is rectified through a self-powered active doubler structure, and stored on a storage capacitor. The stored energy is then transferred to the PE harvester to increase the damping force and charge extraction. The total synergistically extracted power from both harvesters is more than the power obtained ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. ULUSAN, S. CHAMANIAN, W. P. M. R. PATHIRANA, O. ZORLU, A. MUHTAROGLU, and H. Külah, “A triple hybrid micropower generator with simultaneous multi-mode energy harvesting,”
SMART MATERIALS AND STRUCTURES
, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40353.