Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Seismic performance evaluation of traditional timber HA plus /-mA plus /-AY frames: capacity spectrum method based assessment
Download
index.pdf
Date
2016-11-01
Author
Aktas, Yasemin Didem
Türer, Ahmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
3
downloads
Timber constructions have been widely suggested to be seismically resistant based on post-disaster reconnaissance studies. This observation has, however, remained to a large extent anecdotal due to the lack of experimental work supporting it, especially for certain timber architectural forms, including traditional timber frame "hA+/-mA+/-AY" structures. To fill this gap, the authors carried out an extensive full-scale testing scheme using frames of various geometrical configurations, tested under reverse-cyclic lateral loading with/without infill (brick and adobe) or cladding (bagdadi and AYamdolma) (Aktas et al. in Earthq Spectra 30(4):1711-1732, 2014a, b). The tests concluded that hA+/-mA+/-AY frames had high energy dissipation capabilities due mostly to nailed connections. Infill/cladding significantly helped improve stiffness and lateral load strength of the frames, and timber type did not seem to make a remarkable impact on the overall behaviour. The current paper, on the other hand, uses test data to calculate capacity/demand ratios based on capacity spectrum method and Eurocode 8 to elaborate more on the performance of "hA+/-mA+/-AY" structures under seismic loading. The obtained results are discussed to draw important conclusions with regards to how frame geometry and infill/cladding techniques affect the overall performance.
Subject Keywords
Timber frame
,
Himis
,
Capacity spectrum method
URI
https://hdl.handle.net/11511/40380
Journal
BULLETIN OF EARTHQUAKE ENGINEERING
DOI
https://doi.org/10.1007/s10518-016-9943-2
Collections
Department of Civil Engineering, Article