Graphene oxide-doped PEDOT:PSS as hole transport layer in inverted bulk heterojunction solar cell

Ozcan, Sefika
Erer, Mert Can
Vempati, Sesha
Uyar, Tamer
Toppare, Levent Kamil
Çırpan, Ali
Transparent poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) is widely used hole conducting material in optoelectronic devices. Secondary doping of PEDOT:PSS enables the tunability of its electronic properties. In this work, graphene oxide (GO) was used as a secondary dopant for PEDOT:PSS and the doped materials (composites) were tested for their efficiency as hole transport material in inverted bulk heterojunction (BHJ) solar cell. The composites were studied to unveil the effects of Coulombic interaction between GO and PEDOT:PSS where we note some segregation of PEDOT phase. We found that the GO majorly interacts with PSS through oxygeneous functional groups which promote the detachment of PEDOT from PSS and segregation of PEDOT. Electrochemical properties with and without illumination revealed some photo-induced changes to surface of the samples. Device performances showed about 2.2% efficiency enhancement when GO doping level was 0.25 (v:v) when compared to that of pristine PEDOT:PSS.
Journal of Materials Science: Materials in Electronics


Efficient light emitting diodes from polyfluorene copolymer blends
Çırpan, Ali; Karasz, FE (Elsevier BV, 2005-04-30)
Highly efficient light emitting diodes were obtained by blending blue-emitting poly [(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(N,N'-diphenyl)-N,N-di(p-butyl-oxyphenyl)-1 ,4-diaminobenzene] (1) with green-emitting poly [(9,9-dioctyl-2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (II). Only green emission was obtained from the films of polymer blends and from corresponding double-layer LEDs, indicating an almost complete Forster energy transfer from I to II. These devices sho...
Frequency effect on electrical and dielectric characteristics of In/Cu2ZnSnTe4/Si/Ag diode structure
Gullu, H. H.; Surucu, O. Bayrakli; Terlemezoğlu, Makbule; Yildiz, D. E.; Parlak, Mehmet (Springer Science and Business Media LLC, 2019-05-01)
In/Cu2ZnSnTe4/Si/Ag diode structure was fabricated by sputtering Cu2ZnSnTe4 (CZTTe) thin film layer on the Si layer with In front contact. The frequency dependent room temperature capacitance and conductance measurements were carried out to obtain detailed information of its electrical characteristics. Admittance spectra of the diode exhibited strong frequency dependence and the obtained values showed decreasing behavior with the increase in the applied frequency. The effect of interfacial film layer with s...
Indium rich InGaN solar cells grown by MOCVD
Cakmak, H.; Arslan, Engin; Rudzinski, M.; Demirel, P.; Ünalan, Hüsnü Emrah; Strupinski, W.; Turan, Raşit; ÖZTÜRK, MEHMET AKİF; ÖZBAY, Ekmel (Springer Science and Business Media LLC, 2014-08-01)
This study focuses on both epitaxial growths of InxGa1-xN epilayers with graded In content, and the performance of solar cells structures grown on sapphire substrate by using metal organic chemical vapor deposition. The high resolution X-ray and Hall Effect characterization were carried out after epitaxial InGaN solar cell structures growth. The In content of the graded InGaN layer was calculated from the X-ray reciprocal space mapping measurements. Indium contents of the graded InGaN epilayers change from ...
Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations
KURBAN, MUSTAFA; Erkoç, Şakir (Elsevier BV, 2017-04-01)
Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT.) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that,...
Multicenter perfectly matched layer implementation for finite element mesh truncation
Ozgun, Ozlem; Kuzuoğlu, Mustafa (Wiley, 2007-04-01)
We present the multicenter perfectly matched layer (PML) technique, which is an easy and practical conformal PML implementation, obtained by the complex coordinate stretching, to the problem of mesh truncation in the finite element method. After developing the analytical background of this method. we demonstrate its performance in electromagnetic radiation/scattering problems. (c) 2007 Wiley Periodicals, Inc.
Citation Formats
S. Ozcan, M. C. Erer, S. Vempati, T. Uyar, L. K. Toppare, and A. Çırpan, “Graphene oxide-doped PEDOT:PSS as hole transport layer in inverted bulk heterojunction solar cell,” Journal of Materials Science: Materials in Electronics, pp. 3576–3584, 2020, Accessed: 00, 2020. [Online]. Available: