Effect of Polymers on the Rheological Properties of KCl Polymer Type Drilling Fluid

2005-05-01
In the course of this research, the effect of two polymers (xanthan gum and polyanionic cellulose) on the rheological properties of KCl/polymer type drilling fluids was investigated. Non-Newtonian drilling fluids are conventionally characterized by rheological models (Bingham Plastic, Power Law, Casson, Herchel-Bulkley and Robertson-Stiff). In this research, forty-five KCl/polymer data sets of varying compositions are prepared. Polymer addition to the system has affected the model and caused a variation of Power Law Model parameters, consistency index and flow behavior index. Consistency index was observed to increase as the polymer concentration increased, supplying more shear stress values. Decrease of flow behavior index due to polymer addition is interpreted as deviating from Newtonian behavior Gelation for both 10 s and 10 min has increased by polymer addition to the system.
Energy Sources Part-A

Suggestions

Effects of walnut shells on the rheological properties of water-based drilling fluids
Iscan, A.G.; Kök, Mustafa Verşan (2007-08-01)
In this research, three different water-based drilling fluids were prepared according to American Petroleum Institute (API) standards, and effects of walnut shells on the rheological properties of the samples were studied. The walnut shells of 2-, 4-, and 6-mm samples and their equal weight mixtures of 2-4 mm and 4 6 mm were added to the drilling fluid samples in different concentrations. The aim of this study is to determine the optimum walnut shell size, concentration and polymer concentration to minimize...
Effects of silica nanoparticles on the performance of water-based drilling fluids
Kök, Mustafa Verşan; Bal, Berk (2019-09-01)
In this research, two groups of experiments were conducted to investigate the effects of silica (SiO2) nanoparticles on the filtration and rheological properties of water-based drilling fluids. In the first group, bentonite, chrome-free lignosulfonate (CFL) and carboxymethyl cellulose (CMC) were used in different concentrations to obtain base fluids. Nanofluids were prepared by adding 0.5 g of four different silica nanoparticles into these drilling fluids. Comparison of rheological properties, fluid loss am...
Effects of nanoparticles on the performance of drilling fluids
Bal, Berk; Kök, Mustafa Verşan; Gücüyener, İsmail Hakkı; Department of Petroleum and Natural Gas Engineering (2017)
In this master thesis, effects of nanoparticles on the filtration and rheological properties of water-based drilling fluids are experimentally investigated. Four different silica nanoparticles are added into the lignosulfonate and bentonite based drilling fluids. By using data obtained at the end of this research, filtration and rheological properties of nanofluids are analyzed and compared with the base fluids at different temperatures. Two groups of experiments are conducted in this research. In the first...
Effects of chain extension and branching on the properties of recycled poly(ethylene terephtkalate)-organoclay nanocomposites
Keyfoğlu, Ali Emrah; Yılmazer, Ülkü; Department of Chemical Engineering (2004)
In this study, the effects of chain extension and branching on the properties of nanocomposites produced from recycled poly(ethylene terephthalate) and organically modified clay were investigated. As the chain extension/branching agent, maleic anhydride (MA) and pyromellitic dianhydride (PMDA) were used. The nanocomposites were prepared by twin-screw extrusion, followed by injection molding. Recycled poly(ethylene terephthalate), was mixed with 2, 3 and 4 weight % of organically modified montmorillonite. Du...
Effect of Carboxy Methyl Cellulose and Determination of Pore Throat Criteria for Water-based Drilling Fluids
Kök, Mustafa Verşan (Informa UK Limited, 2009-01-01)
In this research, the effect of carboxy methyl cellulose (CMC) on the rheological properties of two different water-based drilling fluids was studied. It was observed that the fluid loss decreased as CMC concentration increased, but the rate of decrease was too low to notice after 1 gr. CMC. It was also observed that shear stress increased as the CMC concentration increased. Experimentally, it was observed that 1 gr. CMC/350 ml of drilling fluid slurry is sufficiently appropriate for optimum rheological eff...
Citation Formats
M. V. Kök, “Effect of Polymers on the Rheological Properties of KCl Polymer Type Drilling Fluid,” Energy Sources Part-A, pp. 405–416, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40397.