Analytical modeling of asymmetric multi-segment rotor - bearing systems with Timoshenko beam model including gyroscopic moments

In this study, analytical modeling and an analysis approach for asymmetric multi-segment rotor bearing systems are presented. Timoshenko beam model which includes the effect of gyroscopic moments is employed for modeling rotor segments. Instead of applying FEM, sub-segment Frequency Response Functions (FRFs) are obtained analytically, and sub-segment FRFs obtained are coupled by using receptance coupling method. Bearing properties are included into system dynamics by employing structural modification techniques. The proposed analytical model is verified by using FEM approach. It is shown that using analytical model and receptance coupling, compared with FEM, reduces computational time drastically without losing accuracy.


Dynamic characterization of bolted joints using FRF decoupling and optimization
Tol, Serife; Özgüven, Hasan Nevzat (2015-03-01)
Mechanical connections play a significant role in predicting dynamic characteristics of assembled structures. Therefore, equivalent dynamic models for joints are needed. Due to the complexity of joints, it is difficult to describe joint dynamics with analytical models. Reliable models are generally obtained using experimental measurements. In this paper an experimental identification method based on FRF decoupling and optimization algorithm is proposed for modeling joints. In the method the FRFs of two subs...
Comparison of rotor inflow models for flight simulation fidelity
Güner, Feyyaz; Yavrucuk, İlkay; Department of Aerospace Engineering (2016)
In real-time rotorcraft simulations, there are various dynamic inflow models to chose from. Although dynamic inflow models are well documented in literature, a comparisons of them are not commonly available. In this thesis, dynamic inflow models commonly used in flight simulators are, namely uniform inflow, extesion of uniform inflow with Payne’s coefficients, Pitt-Peters inflow and Peters-He inflow model with higher harmonics, integrated to a well-known blade element model. A theoretical background for dyn...
Performance Analysis of a Micro-scale Model Helicopter Rotor in Hover Flight
Şahin, Mustafa; Kurtuluş, Dilek Funda (2015-09-12)
This experimental study contains the design, production, test and evaluation of the test processes of a Micro-Scale Rotor Test-Rig. For the study, NACA 0012 airfoil section is selected as a rotor blade without a twist and a taper ratio. The tests cover the thrust and the torque relation with different blade pitch angles and RPM values.
Numerical investigation of characteristics of pitch and roll damping coefficients for missile models
Kayabaşı, İskander; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2012)
In this thesis the characteristics of pitch and roll damping coefficients of missile models are investigated by using Computational Fluid Dynamics (CFD) techniques. Experimental data of NACA0012 airfoil, Basic Finner (BF) and Modified Basic Finner (MBF) models are used for validation and verification studies. Numerical computations are performed from subsonic to supersonic flow regimes. Grid refinement and turbulence model selection studies are conducted before starting the dynamic motion simulations. Numer...
Analytical and Experimental Study on Actuation Time of Displacement Amplified Electromagnetic Actuator
Nabae, Hiroyuki; Karaguzel, A. Tugay; Endo, Gen; Suzumori, Koichi (2017-07-07)
This paper describes an analytical study undertaken on an electromagnetic actuator design with a displacement amplification mechanism by explaining the physical modeling and formulizing the actuation time of the actuator in terms of physical model variables. This is followed by an experimental investigation on the actuation time of the electromagnetic actuator. Increasing the gap between the electromagnet and armatures to increase the stroke of the electromagnetic actuator resulted in a drastic loss of the ...
Citation Formats
O. Özşahin and H. N. Özgüven, “Analytical modeling of asymmetric multi-segment rotor - bearing systems with Timoshenko beam model including gyroscopic moments,” COMPUTERS & STRUCTURES, pp. 119–126, 2014, Accessed: 00, 2020. [Online]. Available: