Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Use of Asymptotic Waveform Evaluation Technique in the Analysis of Multilayer Structures With Doubly Periodic Dielectric Gratings
Date
2009-09-01
Author
Gudu, Tamer
Alatan, Lale
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
249
views
0
downloads
Cite This
The reflection and dispersion characteristics of multilayer structures that involve periodically implanted material blocks are obtained by using the MoM solution of the volume integral equation. The asymptotic waveform evaluation (AWE) technique is utilized to obtain a Pade approximation of the solution in terms of a parameter such as frequency or incident angle. The use of AWE technique enables a fast sweep with respect to the approximation parameter. Moreover, a robust method for extracting the dispersion characteristics of periodic structures via Pade approximation is proposed. The AWE procedure requires the calculation of high order derivatives of the complicated kernel function that consists of Green's functions for stratified medium. These derivatives are calculated by employing the Automatic Differentiation Theory. The reflection coefficient, propagation constant and band diagram of the structure are obtained both via point-by-point simulations and through the use of AWE technique. It is observed that AWE technique increases the computational efficiency without losing accuracy.
Subject Keywords
Electrical and Electronic Engineering
URI
https://hdl.handle.net/11511/40407
Journal
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
DOI
https://doi.org/10.1109/tap.2009.2027050
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Efficient solution of the electric-field integral equation using the iterative LSQR algorithm
Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2008-01-01)
In this letter, we consider iterative solutions of the three-dimensional electromagnetic scattering problems formulated by surface integral equations. We show that solutions of the electric-field integral equation (EFIE) can be improved by employing an iterative least-squares QR (LSQR) algorithm. Compared to many other Krylov subspace methods, LSQR provides faster convergence and it becomes an alternative choice to the time-efficient no-restart generalized minimal residual (GMRES) algorithm that requires la...
Stabilization of integral-equation formulations for the accurate solution of scattering problems involving low-contrast dielectric objects
Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2008-03-01)
The solution of scattering problems involving low-contrast dielectric objects with three-dimensional arbitrary shapes is considered. Using the traditional forms of the surface integral equations, scattered fields cannot be calculated accurately if the contrast of the object is low. Therefore, we consider the stabilization of the formulations by extracting the nonradiating parts of the equivalent currents. We also investigate various types of stable formulations and show that accuracy can be improved systema...
Implementation of the Equivalence Principle Algorithm for Potential Integral Equations
Farshkaran, Ali; Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2019-05-01)
A novel implementation of the equivalence principle algorithm (EPA) employing potential integral equations (PIEs) is presented. EPA is generalized to be compatible with PIEs that are used to formulate inner problems inside equivalence surfaces. Based on the stability of PIEs, the resulting EPA-PIE implementation is suitable for low-frequency problems involving dense discretizations with respect to wavelength. Along with the formulation and a clear demonstration of the EPA-PIE mechanism, high accuracy, stabi...
Performance Enhancement of the Single-Phase Series Active Filter by Employing the Load Voltage Waveform Reconstruction and Line Current Sampling Delay Reduction Methods
Senturk, Osman S.; Hava, Ahmet Masum (Institute of Electrical and Electronics Engineers (IEEE), 2011-08-01)
This paper proposes the waveform reconstruction method (WRM), which is utilized in the single-phase series active filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line current sampling delay reduction method, a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous-reference...
Singularity Cancellation for Accurate MoM Analysis of Periodic Planar Structures in Layered Media
Adanir, Suleyman; Alatan, Lale (Institute of Electrical and Electronics Engineers (IEEE), 2020-08-01)
One of the singularity cancellation schemes proposed in the literature is applied to calculate singular integrals arising in the method of moments (MoM) analysis of 2-D periodic planar structures in multilayered media. Discrete complex image method is utilized for the accurate approximation of Green's function which also makes possible the application of the Ewald transformation for the efficient computation of the series associated with the periodic structure. This approximation and transformation modifies...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Gudu and L. Alatan, “Use of Asymptotic Waveform Evaluation Technique in the Analysis of Multilayer Structures With Doubly Periodic Dielectric Gratings,”
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
, pp. 2641–2649, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40407.