Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Singularity Cancellation for Accurate MoM Analysis of Periodic Planar Structures in Layered Media
Date
2020-08-01
Author
Adanir, Suleyman
Alatan, Lale
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
260
views
0
downloads
Cite This
One of the singularity cancellation schemes proposed in the literature is applied to calculate singular integrals arising in the method of moments (MoM) analysis of 2-D periodic planar structures in multilayered media. Discrete complex image method is utilized for the accurate approximation of Green's function which also makes possible the application of the Ewald transformation for the efficient computation of the series associated with the periodic structure. This approximation and transformation modifies the kernel of the integral appearing in the computation of the MoM matrix entries. Formulation of the problem for this new kernel is presented together with numerical results demonstrating the achieved accuracy.
Subject Keywords
Electrical and Electronic Engineering
URI
https://hdl.handle.net/11511/37985
Journal
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS
DOI
https://doi.org/10.1109/lawp.2020.2997798
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Singularity of the magnetic-field integral equation and its extraction
Gurel, L; Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2005-01-01)
In the solution of the magnetic-field integral equation (MFIE) by the method of moments (MOM) on planar triangulations, singularities arise both in the inner integrals on the basis functions and also in the outer integrals on the testing functions. A singularity-extraction method is introduced for the efficient and accurate computation of the outer integrals, similar to the way inner-integral singularities are handled. In addition, various formulations of the MFIE and the electric-field integral equation ar...
EFIE-Tuned Testing Functions for MFIE and CFIE
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2017-01-01)
A recently developed numerical technique for improving the accuracy of the magnetic-field integral equation and the combined-field integral equation with low-order discretizations using the Rao-Wilton-Glisson functions is demonstrated on iterative solutions of large-scale complex problems, in order to prove the effectiveness of the proposed strategy as an alternative way for accurate and efficient analysis of multifrequency applications.
CBFEM-MPI: A Parallelized Version of Characteristic Basis Finite Element Method for Extraction of 3-D Interconnect Capacitances
Ozgun, Ozlem; Mittra, Raj; Kuzuoğlu, Mustafa (Institute of Electrical and Electronics Engineers (IEEE), 2009-02-01)
In this paper, we present a novel, non-iterative domain decomposition method, which has been parallelized by using the message passing interface (MPI) library, and used to efficiently extract the capacitance matrixes of 3-D interconnect structures, by employing characteristic basis functions (CBFs) in the context of the finite element method (FEM). In this method, which is Failed CBFEM-MPI, the computational domain is partitioned into a number of nonoverlapping subdomains in which the CBFs are constructed b...
Nested U-ring resonators: a novel multi-band metamaterial design in microwave region
Turkmen, O.; EKMEKÇİ, Evren; Sayan, Gönül (Institution of Engineering and Technology (IET), 2012-07-17)
In this study, a novel metamaterial topology, called M-band nested U-ring resonator (M-NURR), is proposed to provide multiple band operation with an electrically small and geometrically simple unit cell design. The M-NURR unit cell has M-nested and unconnected U-shaped metal rings printed on a dielectric substrate where each ring is primarily associated with a distinct LC type resonance frequency where L and C stand for inductance and capacitance, respectively. Therefore this M-NURR topology has the novel p...
Hybrid connection of RF MEMS and SMT components in an impedance tuner
Unlu, Mehmet; Topalli, Kagan; Atasoy, Halil Ibrahim; Demir, Şimşek; Aydın Çivi, Hatice Özlem; Akın, Tayfun (Elsevier BV, 2010-01-01)
This paper presents a systematic construction of a model for a hybrid connected RF MEMS and SMT components in a reconfigurable impedance tuner. The double stub hybrid impedance tuner which employs a high number of MEMS switches is selected to demonstrate the feasibility of the connections. In the hybrid tuner, MEMS switches are actuated with DC bias signals, where SMT resistors de-couple RF from the DC lines. The hybrid tuner is realized in two steps, where the MEMS impedance tuner is fabricated on a glass ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Adanir and L. Alatan, “Singularity Cancellation for Accurate MoM Analysis of Periodic Planar Structures in Layered Media,”
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS
, pp. 1301–1305, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37985.