Effective theory of interacting fermions in shaken square optical lattices

Keleş, Ahmet
Liu, W. Vincent
We develop a theory of weakly interacting fermionic atoms in shaken optical lattices based on the orbital mixing in the presence of time-periodic modulations. Specifically, we focus on fermionic atoms in a circularly shaken square lattice with near-resonance frequencies, i.e., tuned close to the energy separation between the s band and the p bands. First, we derive a time-independent four-band effective Hamiltonian in the noninteracting limit. Diagonalization of the effective Hamiltonian yields a quasienergy spectrum consistent with the full numerical Floquet solution that includes all higher bands. In particular, we find that the hybridized s band develops multiple minima and therefore nontrivial Fermi surfaces at different fillings. We then obtain the effective interactions for atoms in the hybridized s band analytically and show that they acquire momentum dependence on the Fermi surface even though the bare interaction is contactlike. We apply the theory to find the phase diagram of fermions with weak attractive interactions and demonstrate that the pairing symmetry is s + d wave. Our theory is valid for a range of shaking frequencies near resonance, and it can be generalized to other phases of interacting fermions in shaken lattices.


Engineering nonlinear response of nanomaterials using Fano resonances
Turkpence, Deniz; Akguc, Gursoy B.; Bek, Alpan; Taşgın, Mehmet Emre (IOP Publishing, 2014-10-01)
We show that nonlinear optical processes of nanoparticles can be controlled by the presence of interactions with a molecule or a quantum dot. By choosing the appropriate level spacing for the quantum emitter, one can either suppress or enhance the nonlinear frequency conversion. We reveal the underlying mechanism for this effect, which is already observed in recent experiments: (i) suppression occurs simply because transparency induced by Fano resonance does not allow an excitation at the converted frequenc...
Investigation of the structural properties of low dimensional nanostructures : molecular dynamics simulations
Özdamar, Burak; Erkoç, Şakir; Department of Physics (2013)
This study aims to investigate the structural and thermodynamic properties of nanostructures which are generated from different atoms and geometries. The nanostructures in question are boron nitride nanoparticles, silicon nanowires along with sawtooth-like graphene nanoribbons. The goal is to calculate the specific heat values of boron nitride nanoparticles while the mechanical properties of the other nanostructures are investigated under uniaxial strain. The structural behaviors of these generated nanopart...
Quantum chemical investigation of thalidomide molecule
Erkoç, Şakir; Erkoc, F (Elsevier BV, 2005-04-14)
The structural and electronic properties of the thalidomide molecule have been investigated theoretically by performing semi-empirical molecular orbital (AM1) and density functional theory calculations. The geometry of the molecule has been optimized by AM1 method and the electronic properties of the molecule have been calculated by density functional theory in its ground state.
Electronic properties of a large quantum dot at a finite temperature
Gulveren, B; Atav, U; Tomak, Mehmet (Elsevier BV, 2005-09-01)
The physical properties of a two-dimensional parabolic quantum dot composed of large number of interacting electrons are numerically determined by the Thomas Fermi (TF) method at a finite temperature. Analytical solutions are given for zero temperature for comparative purposes. The exact solution of the TF equation is obtained for the non-interacting system at finite temperatures. The effect of the number of particles and temperature on the properties are investigated both for interacting and non-interactin...
Quantum effects in the diffusion process to form a heavy nucleus in heavy-ion fusion reactions
Washiyama, Kouhei; Yilmaz, Buelent; Ayik, Sakir; Takigawa, Noboru (2006-03-23)
We discuss quantum effects in the diffusion process which is used to describe the shape evolution from the touching configuration of fusing two nuclei to a compound nucleus. Applying the theory with quantum effects to the case where the potential field, the mass and friction parameters are adapted to realistic values of heavy-ion collisions, we show that the quantum effects play significant roles at low temperatures which are relevant to the synthesis of superheavy elements.
Citation Formats
A. Keleş and W. V. Liu, “Effective theory of interacting fermions in shaken square optical lattices,” PHYSICAL REVIEW A, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40431.