Computational Spectral Imaging with Photon Sieves

2016-01-01
Öktem, Sevinç Figen
Davila, Joseph M.
Spectral imaging, the sensing of spatial information as a function of wavelength, is a widely used diagnostic technique in diverse fields such as physics, chemistry, biology, medicine, astronomy, and remote sensing. In this paper, we present a novel computational imaging modality that enables high-resolution spectral imaging by distributing the imaging task between a photon sieve system and a computer. The photon sieve system, coupled with a moving detector, provides measurements from multiple planes. Then an inverse problem is solved in a Bayesian estimation framework to reconstruct the multi-spectral images from these superimposed and blurred measurements. The results illustrate that this technique enables higher spatial and spectral resolution than conventional filtered-based spectral imagers.

Suggestions

Computational spectral imaging techniques using diffractive lenses and compressive sensing
Kar, Oğuzhan Fatih; Öktem, Sevinç Figen; Department of Electrical and Electronics Engineering (2019)
Spectral imaging is a fundamental diagnostic technique in physical sciences with application in diverse fields such as physics, chemistry, biology, medicine, astronomy, and remote sensing. In this thesis, we first present a modified version of a high-resolution computational spectral imaging modality and develop a fast sparse recovery method to solve the associated large-scale inverse problems. This technique uses a diffractive lens called photon sieve for dispersing the optical field. We then extend this t...
Numerical and experimental evaluation of computational spectral imaging with photon sieves
Alkanat, Tunç; Öktem, Sevinç Figen; Department of Electrical and Electronics Engineering (2016)
Spectral imaging, the simultaneous imaging and spectroscopy of a radiating scene, is an important diagnostic tool for an expanding range of applications in physics, chemistry, biology, medicine, astronomy, and remote sensing. In this thesis, a recently developed computational imaging technique that enables high-resolution spectral imaging is studied both numerically and experimentally. This technique employs a diffractive imaging element called photon sieve, and distributes the image formation taskbetween t...
Deep CNN prior based image reconstruction for multispectral imaging
Manisali, İrfan; Cam, Refik; Bezek, Can Deniz; Öktem, Sevinç Figen (IEEE; 2020-10-07)
Spektral görüntüleme, fizik, kimya, biyoloji, tıp, astronomi ve uzaktan algılama gibi farklı alanlarda yaygın olarak kullanılan temel bir tanılayıcı tekniktir. Bu bildiride, hesaplamalı görüntüleme prensibine dayanan ve kırınımlı lens içeren birçoklu spektral görüntüleme tekniğine odaklanılmakta, bunun için evrişimsel sinir ağlarından yararlanan görüntü geriçatım yöntemi geliştirilmektedir. Sistemin elde ettiği ham verilerden spektral görüntülerin geriçatılması için, ters problem düzenlileştirme içeren bir ...
Absorbance Estimation and Gas Emissions Detection in Hyperspectral Imagery
Başkurt, Nur Didem; Gur, Yusuf; Omruuzun, Fatih; Çetin, Yasemin (2016-05-19)
Hyperspectral imaging in gas detection applications is a leading and widely studied research topic thanks to its high spectral resolution and remote detection ability. The main problems in these applications covers the leakage detection, gas identification, and quantification. The proposed algorithm aims to reach the transmittance and absorbance features of the gas and to detect the gaseous region by using the measured radiance data from the hyperspectral infrared sensors.
A Parametric Estimation Approach to Instantaneous Spectral Imaging
Öktem, Sevinç Figen; Davila, Joseph M (2014-12-01)
Spectral imaging, the simultaneous imaging and spectroscopy of a radiating scene, is a fundamental diagnostic technique in the physical sciences with widespread application. Due to the intrinsic limitation of two-dimensional (2D) detectors in capturing inherently three-dimensional (3D) data, spectral imaging techniques conventionally rely on a spatial or spectral scanning process, which renders them unsuitable for dynamic scenes. In this paper, we present a nonscanning (instantaneous) spectral imaging techn...
Citation Formats
S. F. Öktem and J. M. Davila, “Computational Spectral Imaging with Photon Sieves,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40476.