Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Concept discovery on relational databases: New techniques for search space pruning and rule quality improvement
Date
2010-12-01
Author
Kavurucu, Yusuf
Karagöz, Pınar
Toroslu, İsmail Hakkı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
0
downloads
Cite This
Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intractably large search space and to be able to generate high-quality patterns. In this work, we introduce an ILP-based concept discovery framework named Concept Rule Induction System (CRIS) which includes new approaches for search space pruning and new features, such as defining aggregate predicates and handling numeric attributes, for rule quality improvement. In CRIS, all target instances are considered together, which leads to construction of more descriptive rules for the concept. This property also makes it possible to use aggregate predicates more accurately in concept rule construction. Moreover, it facilitates construction of transitive rules. A set of experiments is conducted in order to evaluate the performance of proposed method in terms of accuracy and coverage.
Subject Keywords
Software
,
Information Systems and Management
,
Management Information Systems
,
Artificial Intelligence
URI
https://hdl.handle.net/11511/40487
Journal
KNOWLEDGE-BASED SYSTEMS
DOI
https://doi.org/10.1016/j.knosys.2010.04.011
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
ILP-based concept discovery in multi-relational data mining
Kavurucu, Yusuf; Karagöz, Pınar; Toroslu, İsmail Hakkı (Elsevier BV, 2009-11-01)
Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intractably large search space and to be able to generate high-quality patterns. In this work, an ILP-based concept discov...
Confidence-based concept discovery in relational databases
Kavurucu, Yusuf; Karagöz, Pınar; Toroslu, İsmail Hakkı (2009-11-16)
Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intractably large search space and to be able to generate high-quality patterns. In this work, we improve an ILP-based con...
Aggregation in confidence-based concept discovery for multi-relational data mining
Kavurucu, Yusuf; Senkul, Pinar; Toroslu, İsmail Hakkı (null; 2008-12-01)
Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intractably large search space and to be able to generate high-quality patterns. In this work, we describe a method for ge...
Confidence-based concept discovery in multi-relational data mining
Kavurucu, Yusuf; Karagöz, Pınar; Toroslu, İsmail Hakkı (2008-03-21)
Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intractably large search space and to be able to generate high-quality patterns. In this work, a new ILP-based concept dis...
An access structure for similarity-based fuzzy databases
Yazıcı, Adnan (Elsevier BV, 1999-04-01)
A significant effort has been made in representing imprecise information in database models by using fuzzy set theory. However, the research directed toward access structures to handle fuzzy querying effectively is still at an immature stage. Fuzzy querying involves more complex processing than the ordinary querying does. Additionally, a larger number of tuples are possibly selected by fuzzy conditions in comparison to the crisp ones. It is obvious that the need for fast response time becomes very important...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Kavurucu, P. Karagöz, and İ. H. Toroslu, “Concept discovery on relational databases: New techniques for search space pruning and rule quality improvement,”
KNOWLEDGE-BASED SYSTEMS
, pp. 743–756, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40487.