Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
New Prediction for Extended Targets With Random Matrices
Download
index.pdf
Date
2014-04-01
Author
Granstrom, Karl
Orguner, Umut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
164
views
201
downloads
Cite This
This paper presents a new prediction update for extended targets whose extensions are modeled as random matrices. The prediction is based on several minimizations of the Kullback-Leibler divergence (KL-div) and allows for a kinematic state dependent transformation of the target extension. The results show that the extension prediction is a significant improvement over the previous work carried out on the topic.
Subject Keywords
Electrical and Electronic Engineering
,
Aerospace Engineering
URI
https://hdl.handle.net/11511/40488
Journal
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS
DOI
https://doi.org/10.1109/taes.2014.120211
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
In-Orbit Estimation of Time-Varying Residual Magnetic Moment
Söken, Halil Ersin; Wisniewski, Rafal (Institute of Electrical and Electronics Engineers (IEEE), 2014-10-01)
A method for in-orbit estimation of time-varying residual magnetic moment (RMM) is presented. By use of a simple approach, the covariance of the Kalman filter is adapted to get better tracking in case of unexpected abrupt changes in the RMM without sacrificing estimation accuracy. The proposed method does not need a priori information about the magnitude of the change and assures both accurate estimation and good tracking performance for changes with different magnitudes.
NEW FAMILY OF MODAL METHODS FOR CALCULATING EIGENVECTOR DERIVATIVES
AKGUN, MA (American Institute of Aeronautics and Astronautics (AIAA), 1994-02-01)
A new family of modal methods for the calculation of eigenvector derivatives in non-self-adjoint systems with a singular coefficient matrix is developed. The family contains the modal and modified modal methods as a subset. In the family, the component of the mth eigenvector in the expansion of the derivative of the jth eigenvector is multiplied by various powers of the eigenvalue ratio lambda(i)/lambda(m), thereby accelerating convergence. The family of methods is applied to a self-adjoint example problem,...
Derivation of length extension formulas for complementary sets of sequences using orthogonal filterbanks
Candan, Çağatay (Institution of Engineering and Technology (IET), 2006-11-23)
A method for the construction of complementary sets of sequences using polyphase representation of orthogonal filterbanks is presented. It is shown that the case of two-channel filterbanks unifies individually derived length extension formulas for complementary sequences into a common framework and the general M-channel case produces novel formulas for the extension of complementary sets of sequences. The presented technique can also be used to generate polyphase and multilevel sequences.
A method in model updating using Miscorrelation Index sensitivity
Kozak, Mustafa Tuğrul; Öztürk, Murat; Özgüven, Hasan Nevzat (Elsevier BV, 2009-08-01)
This paper presents a new model updating method based on minimization of an index called Miscorrelation Index (MCI), which is introduced to localize the coordinates carrying error in a finite element (FE) model. MCI can be calculated from measured frequency response functions (FRFs) and dynamic stiffness matrix of the FE model for each coordinate as a function of frequency. Nonzero numerical values for MCI of a coordinate indicate errors in one or more elements of the system matrices corresponding to this c...
A new sure-success generalization of Grover iteration and its application to weight decision problem of Boolean functions
Uyanik, K.; Turgut, Sadi (Springer Science and Business Media LLC, 2013-11-01)
In two recent papers, a sure-success version of the Grover iteration has been applied to solve the weight decision problem of a Boolean function and it is shown that it is quadratically faster than any classical algorithm (Braunstein et al. in J Phys A Math Theor 40:8441, 2007; Choi and Braunstein in Quantum Inf Process 10:177, 2011). In this paper, a new approach is proposed to generalize the Grover's iteration so that it becomes exact and its application to the same problem is studied. The regime where a ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Granstrom and U. Orguner, “New Prediction for Extended Targets With Random Matrices,”
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS
, pp. 1577–1589, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40488.